Biology:HUH-tag

From HandWiki
Revision as of 18:47, 28 June 2023 by Rtextdoc (talk | contribs) (over-write)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

File:HUH reaction.tif HUH endonucleases (HUH-tags) are sequence-specific single-stranded DNA (ssDNA) binding proteins originating from numerous species of bacteria and viruses.[1] Viral HUH endonucleases are involved in initiating rolling circle replication while ones of bacterial origin initiate bacterial conjugation. In biotechnology, they can be used to create protein-DNA linkages,[2] akin to other methods such as SNAP-tag. In doing so, they create a 5' covalent bond between the ssDNA and the protein. HUH endonucleases can be fused with other proteins or used as protein tags.

The name HUH stands for "histidine-hydrophobic-histidine," referring to the three amino acids at the active site of the endonuclease. Some DNA viruses code for an HUH endonuclease which initiates rolling circle replication of the viral genome, and this process defines the realm Monodnaviria.[3]

Types of HUH endonucleases

HUH endonucleases are broadly split into two categories of enzymes: replication initiator proteins (Rep) or relaxase / mobilization proteins. They both contain small protein domains that recognize sequence-specific origins of replication or origin of transfer at which site they nick DNA. The nicking domain of Reps tend to be smaller, on the order of 10-20 kDa while nicking domains from relaxases are larger, roughly 20-40 kDa in size.[2]

Mode of action

HUH endonucleases generally have two histidine (H) residues in the active site coordinating a metal cation (Mg2+ or Mn2+) that interacts with the phosphate backbone of DNA. These residues allow for a nucleophilic attack, most commonly by an activated tyrosine of the scissile phosphate in the DNA backbone, generating a 5' covalent bond with the ssDNA. In contrast to other DNA-protein linkage approaches, this reaction occurs at ambient conditions and does not require any additional modifications. X-ray crystallography and NMR structures have provided insight into the sequence specificity of DNA binding.[4][5]

WDV Rep reaction mechanism of nucleophilic attack on the DNA backbone.

Applications

References

  1. Chandler, Michael; de la Cruz, Fernando; Dyda, Fred; Hickman, Alison B.; Moncalian, Gabriel; Ton-Hoang, Bao (2013-07-08). "Breaking and joining single-stranded DNA: the HUH endonuclease superfamily". Nature Reviews Microbiology 11 (8): 525–538. doi:10.1038/nrmicro3067. ISSN 1740-1526. PMID 23832240. 
  2. 2.0 2.1 Lovendahl, Klaus N.; Hayward, Amanda N.; Gordon, Wendy R. (2017-05-24). "Sequence-Directed Covalent Protein–DNA Linkages in a Single Step Using HUH-Tags". Journal of the American Chemical Society 139 (20): 7030–7035. doi:10.1021/jacs.7b02572. ISSN 0002-7863. PMID 28481515. 
  3. "Create a megataxonomic framework, filling all principal taxonomic ranks, for ssDNA viruses" (in en) (docx). 18 October 2019. https://ictv.global/ictv/proposals/2019.005G.zip. 
  4. Vega-Rocha, Susana; Byeon, In-Ja L.; Gronenborn, Bruno; Gronenborn, Angela M.; Campos-Olivas, Ramón (2007). "Solution Structure, Divalent Metal and DNA Binding of the Endonuclease Domain from the Replication Initiation Protein from Porcine Circovirus 2". Journal of Molecular Biology 367 (2): 473–487. doi:10.1016/j.jmb.2007.01.002. ISSN 0022-2836. PMID 17275023. 
  5. Everett, Blake A.; Litzau, Lauren A.; Tompkins, Kassidy; Shi, Ke; Nelson, Andrew; Aihara, Hideki; Evans Iii, Robert L.; Gordon, Wendy R. (2019-12-01). "Crystal structure of the Wheat dwarf virus Rep domain". Acta Crystallographica Section F 75 (Pt 12): 744–749. doi:10.1107/S2053230X19015796. ISSN 2053-230X. PMID 31797816. 
  6. Zdechlik, Alina C.; He, Yungui; Aird, Eric J.; Gordon, Wendy R.; Schmidt, Daniel (2019-12-06). "Programmable Assembly of Adeno-Associated Virus–Antibody Composites for Receptor-Mediated Gene Delivery". Bioconjugate Chemistry 31 (4): 1093–1106. doi:10.1021/acs.bioconjchem.9b00790. ISSN 1043-1802. PMID 31809024. 
  7. Aird, Eric J.; Lovendahl, Klaus N.; Martin, Amber St; Harris, Reuben S.; Gordon, Wendy R. (2018-05-31). "Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template" (in en). Communications Biology 1 (1): 54. doi:10.1038/s42003-018-0054-2. ISSN 2399-3642. PMID 30271937. 
  8. Ali, Zahir; Shami, Ashwag; Sedeek, Khalid; Kamel, Radwa; Alhabsi, Abdulrahman; Tehseen, Muhammad; Hassan, Norhan; Butt, Haroon et al. (2020-01-23). "Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice" (in en). Communications Biology 3 (1): 44. doi:10.1038/s42003-020-0768-9. ISSN 2399-3642. PMID 31974493. 
  9. Guo, Wei; Mashimo, Yasumasa; Kobatake, Eiry; Mie, Masayasu (2020-03-16). "Construction of DNA-displaying nanoparticles by enzymatic conjugation of DNA and elastin-like polypeptides using a replication initiation protein". Nanotechnology 31 (25): 255102. doi:10.1088/1361-6528/ab8042. ISSN 0957-4484. PMID 32176872. 
  10. Sagredo, Sandra; Pirzer, Tobias; Aghebat Rafat, Ali; Goetzfried, Marisa A.; Moncalian, Gabriel; Simmel, Friedrich C.; de la Cruz, Fernando (2016). "Orthogonal Protein Assembly on DNA Nanostructures Using Relaxases" (in en). Angewandte Chemie International Edition 55 (13): 4348–4352. doi:10.1002/anie.201510313. ISSN 1521-3773. PMID 26915475. 
  11. Mie, Masayasu; Niimi, Takahiro; Mashimo, Yasumasa; Kobatake, Eiry (2019-01-03). "Construction of DNA-NanoLuc luciferase conjugates for DNA aptamer-based sandwich assay using Rep protein". Biotechnology Letters 41 (3): 357–362. doi:10.1007/s10529-018-02641-7. ISSN 0141-5492. PMID 30603832.