Chemistry:Mucobromic acid

From HandWiki
Revision as of 23:23, 11 November 2023 by Rtextdoc (talk | contribs) (simplify)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Mucobromic acid
MucobromicEq.png
Names
IUPAC name
2,3-dibromo-4-oxobut-2-enoic acid 3,4-dibromo-5-hydroxy-2,5-dihydrofuran-2-one
Systematic IUPAC name
(2Z)-2,3-Dibromo-4-oxo-2-butenoic acid/(±)-3,4-dibromo-5-hydroxy-2(5H)-furanone (1:1)
Other names
2,3-Dibromomalealdehydic acid

Dibromomalealdehydic acid

Dibromoaldehydoacrylic acid
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 207-670-5
  • 3,4-Dibromo-5-hydroxyfuran-2(5H)-one: 212-164-2
Properties
C4H2Br2O3
Molar mass 257.865 g·mol−1
Appearance white solid
Melting point 122 to 124 °C (252 to 255 °F; 395 to 397 K)
Boiling point 619.7 °C (1,147.5 °F; 892.9 K)
Solubility in methanol 0.1 g/mL
Vapor pressure 5.96−18 mmHg
Hazards[1]
Main hazards burns skin and eyes
Safety data sheet MSDS
GHS pictograms GHS05: Corrosive
GHS Signal word Danger
H314
P280, P305+351+338, P310
Flash point 328.6 °C (623.5 °F; 601.8 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Tracking categories (test):

Mucobromic acid is an organic compound that consists of a dibrominated alkene with aldehyde and carboxylic acid functional groups.[2] It easily tautomerizes to a furanone hemiacetal form. This compound, and the analogous mucochloric acid (CAS #87-56-9), form the group of known mucohalic acids. The bromide appears to behave similarly to the more heavily studied chloride.

Synthesis and structure

Mucobromic acid can be synthesized by bromination of furfural via an oxidation/decarboxylation process:[2]

C4H4OCHO + 3 Br2 + 3 H2O → C2Br2CHO(CO2H) + CO2 + 8 HBr

Mucobromic acid exists as a mixture acyclic and cyclic isomers. The compound can be reduced using sodium borohydride to give the lactone.[3]

Hydrolysis under basic conditions of either the chloro or bromo compound involves substitution of the halide adjacent to the acid. The resulting mucoxyhalic acids exist as a mixture of keto and enol forms.[4] The reaction occurs via a conjugate addition/elimination of the alkene–aldehyde part of the structure.[5]

Mucobromic acid - mucoxybromic acid.png

Hazards

Mucohalic acids have received attention since they are products of the halogenation of biomass. They are genotoxins and potential carcinogens. They have the ability to alkylate certain DNA bases, specifically guanosine, adenosine, and cytosine.[4]

References

  1. "M89625 Mucobromic acid". Sigma-Aldrich. https://www.sigmaaldrich.com/AU/en/product/ALDRICH/M89625. 
  2. 2.0 2.1 Taylor, G. A.. "Mucobromic Acid". Organic Syntheses. http://www.orgsyn.org/demo.aspx?prep=CV4P0688. ; Collective Volume, 4, pp. 688 
  3. Cunha, Silvio; Oliveira, Caio C.; Sabino, José R. (2011). "Synthesis of 3-Bromotetronamides via Amination of 3,4-Dibromofuran-2(5H)-one". J. Braz. Chem. Soc. 22 (3): 598–603. doi:10.1590/s0103-50532011000300026. http://repositorio.bc.ufg.br/bitstream/ri/15392/5/Artigo%20-%20Silvio%20do%20Desterro%20Cunha%20-%202011.pdf. 
  4. 4.0 4.1 Gómez-Bombarelli, R.; González-Pérez, M.; Calle, E.; Casado, J. (2011). "Reactivity of mucohalic acids in water". Water Research 45 (2): 714–720. doi:10.1016/j.watres.2010.08.040. PMID 20855100. 
  5. Wasserman, H. H.; Precopio, F. M. (1952). "Studies on the mucohalic acids .1. The structure of mucoxychloric acid". J. Am. Chem. Soc. 74 (2): 326–328. doi:10.1021/ja01122a009.