Physics:Bresler–Pister yield criterion

From HandWiki
Revision as of 05:30, 5 February 2024 by Scavis (talk | contribs) (change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The Bresler–Pister yield criterion[1] is a function that was originally devised to predict the strength of concrete under multiaxial stress states. This yield criterion is an extension of the Drucker–Prager yield criterion and can be expressed on terms of the stress invariants as

[math]\displaystyle{ \sqrt{J_2} = A + B~I_1 + C~I_1^2 }[/math]

where [math]\displaystyle{ I_1 }[/math] is the first invariant of the Cauchy stress, [math]\displaystyle{ J_2 }[/math] is the second invariant of the deviatoric part of the Cauchy stress, and [math]\displaystyle{ A, B, C }[/math] are material constants.

Yield criteria of this form have also been used for polypropylene[2] and polymeric foams.[3]

The parameters [math]\displaystyle{ A,B,C }[/math] have to be chosen with care for reasonably shaped yield surfaces. If [math]\displaystyle{ \sigma_c }[/math] is the yield stress in uniaxial compression, [math]\displaystyle{ \sigma_t }[/math] is the yield stress in uniaxial tension, and [math]\displaystyle{ \sigma_b }[/math] is the yield stress in biaxial compression, the parameters can be expressed as

[math]\displaystyle{ \begin{align} B = & \left(\cfrac{\sigma_t-\sigma_c}{\sqrt{3}(\sigma_t+\sigma_c)}\right) \left(\cfrac{4\sigma_b^2 - \sigma_b(\sigma_c+\sigma_t) + \sigma_c\sigma_t}{4\sigma_b^2 + 2\sigma_b(\sigma_t-\sigma_c) - \sigma_c\sigma_t} \right) \\ C = & \left(\cfrac{1}{\sqrt{3}(\sigma_t+\sigma_c)}\right) \left(\cfrac{\sigma_b(3\sigma_t-\sigma_c) -2\sigma_c\sigma_t}{4\sigma_b^2 + 2\sigma_b(\sigma_t-\sigma_c) - \sigma_c\sigma_t} \right) \\ A = & \cfrac{\sigma_c}{\sqrt{3}} + B\sigma_c -C\sigma_c^2 \end{align} }[/math]
Figure 1: View of the three-parameter Bresler–Pister yield surface in 3D space of principal stresses for [math]\displaystyle{ \sigma_c=1, \sigma_t=0.3, \sigma_b=1.7 }[/math]
Figure 2: The three-parameter Bresler–Pister yield surface in the [math]\displaystyle{ \pi }[/math]-plane for [math]\displaystyle{ \sigma_c=1, \sigma_t=0.3, \sigma_b=1.7 }[/math]
Figure 3: Trace of the three-parameter Bresler–Pister yield surface in the [math]\displaystyle{ \sigma_1-\sigma_2 }[/math]-plane for [math]\displaystyle{ \sigma_c=1, \sigma_t=0.3, \sigma_b=1.7 }[/math]

Alternative forms of the Bresler-Pister yield criterion

In terms of the equivalent stress ([math]\displaystyle{ \sigma_e }[/math]) and the mean stress ([math]\displaystyle{ \sigma_m }[/math]), the Bresler–Pister yield criterion can be written as

[math]\displaystyle{ \sigma_e = a + b~\sigma_m + c~\sigma_m^2 ~;~~ \sigma_e = \sqrt{3J_2} ~,~~ \sigma_m = I_1/3 ~. }[/math]

The Etse-Willam[4] form of the Bresler–Pister yield criterion for concrete can be expressed as

[math]\displaystyle{ \sqrt{J_2} = \cfrac{1}{\sqrt{3}}~I_1 - \cfrac{1}{2\sqrt{3}}~\left(\cfrac{\sigma_t}{\sigma_c^2-\sigma_t^2}\right)~I_1^2 }[/math]

where [math]\displaystyle{ \sigma_c }[/math] is the yield stress in uniaxial compression and [math]\displaystyle{ \sigma_t }[/math] is the yield stress in uniaxial tension.

The GAZT yield criterion[5] for plastic collapse of foams also has a form similar to the Bresler–Pister yield criterion and can be expressed as

[math]\displaystyle{ \sqrt{J_2} = \begin{cases} \cfrac{1}{\sqrt{3}}~\sigma_t - 0.03\sqrt{3}\cfrac{\rho}{\rho_m~\sigma_t}~I_1^2 \\ -\cfrac{1}{\sqrt{3}}~\sigma_c + 0.03\sqrt{3}\cfrac{\rho}{\rho_m~\sigma_c}~I_1^2 \end{cases} }[/math]

where [math]\displaystyle{ \rho }[/math] is the density of the foam and [math]\displaystyle{ \rho_m }[/math] is the density of the matrix material.

References

  1. Bresler, B. and Pister, K.S., (1985), Strength of concrete under combined stresses, ACI Journal, vol. 551, no. 9, pp. 321–345.
  2. Pae, K. D., (1977), The macroscopic yield behavior of polymers in multiaxial stress fields, Journal of Materials Science, vol. 12, no. 6, pp. 1209-1214.
  3. Kim, Y. and Kang, S., (2003), Development of experimental method to characterize pressure-dependent yield criteria for polymeric foams. Polymer Testing, vol. 22, no. 2, pp. 197-202.
  4. Etse, G. and Willam, K., (1994), Fracture energy formulation for inelastic behavior of plain concrete, Journal of Engineering Mechanics, vol. 120, no. 9, pp. 1983-2011.
  5. Gibson, L. J., Ashby, M. F., Zhang, J., and Triantafillou, T. C. (1989). Failure surfaces for cellular materials under multiaxial loads. I. Modelling. International Journal of Mechanical Sciences, vol. 31, no. 9, pp. 635–663.

See also