Chemistry:Tetracyanoethylene

From HandWiki
Revision as of 23:32, 5 February 2024 by Wincert (talk | contribs) (update)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Organic compound with formula C2(CN)4
Tetracyanoethylene
Tetracyanoethylene.png
tetracyanoethylene
TCNEpowder.jpg
Names
Preferred IUPAC name
Ethenetetracarbonitrile
Other names
TCNE
Identifiers
3D model (JSmol)
ChemSpider
UNII
Properties
C
2
(CN)
4
Molar mass 128.094 g·mol−1
Density 1.35 g/cm3
Melting point 199 °C (390 °F; 472 K)
Boiling point 130 to 140 °C (266 to 284 °F; 403 to 413 K) 0.1 mmHg (sublimes)[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

Tetracyanoethylene (TCNE) is organic compound with the formula C
2
(CN)
4
. It is a colorless solid, although samples are often off-white. It is an important member of the cyanocarbons.

Synthesis and reactions

TCNE is prepared by brominating malononitrile in the presence of potassium bromide to give the KBr-complex, and dehalogenating with copper.[1]

Oxidation of TCNE with hydrogen peroxide gives the corresponding epoxide, which has unusual properties.[2]

In the presence of base, TCNE reacts with malononitrile to give salts of pentacyanopropenide:[3]

C
2
(CN)
4
+ CH
2
(CN)
2
→ [(NC)
2
C=C(CN)–C(CN)
2
]
+ CN
+ 2 H+

Redox chemistry

TCNE is an electron acceptor. Cyano groups have low energy π* orbitals, and the presence of four such groups, with their π systems (conjugated) to the central C=C double bond, gives rise to an electrophilic alkene. TCNE is reduced at −0.27 V vs ferrocene/ferrocenium:[4]

C
2
(CN)
4
+ e
→ [C
2
(CN)
4
]

Because of its ability to accept an electron, TCNE has been used to prepare numerous charge-transfer salts.[5]

The central C=C distance in TCNE is 135 pm.[6] Upon reduction, this bond elongates to 141–145 pm, depending on the counterion.[7]

Safety

TCNE hydrolyzes in moist air to give hydrogen cyanide and should be handled accordingly.[1]

References

  1. 1.0 1.1 1.2 Carboni, R. A. (1959). "Tetracyanoethylene". Organic Syntheses 39: 64. doi:10.15227/orgsyn.039.0064. 
  2. Linn, W. J. (1969). "Tetracyanoethylene Oxide". Organic Syntheses 49: 103. doi:10.15227/orgsyn.049.0103. 
  3. Middleton, W. J.; Wiley, D. W. (1961). "Tetramethylammonium 1,1,2,3,3-Pentacyanopropenide". Org. Synth. 41: 99. doi:10.15227/orgsyn.041.0099. 
  4. Connelly, N. G.; Geiger, W. E. (1996). "Chemical Redox Agents for Organometallic Chemistry". Chemical Reviews 96 (2): 877–910. doi:10.1021/cr940053x. PMID 11848774. 
  5. Chittipeddi, Sailesh; Cromack, K. R.; Miller, Joel S.; Epstein, A. J. (1987-06-22). "Ferromagnetism in Molecular Decamethylferrocenium Tetracyanoethenide (DMeFc TCNE)". Physical Review Letters 58 (25): 2695–2698. doi:10.1103/physrevlett.58.2695. ISSN 0031-9007. PMID 10034821. Bibcode1987PhRvL..58.2695C. 
  6. Becker, P.; Coppens, P.; Ross, F. K. (1973). "Valence electron distribution in cubic tetracyanoethylene by the combined use of x-ray and neutron diffraction". Journal of the American Chemical Society 95 (23): 7604–7609. doi:10.1021/ja00804a010. 
  7. Bock, H.; Ruppert, K. (1992). "Structures of charge-perturbed or sterically overcrowded molecules. 16. The cesium tetracyanoethylenide radical salt". Inorganic Chemistry 31 (24): 5094–5099. doi:10.1021/ic00050a032.