Astronomy:58 Leonis
Observation data Equinox J2000.0]] (ICRS) | |
---|---|
Constellation | Leo |
Right ascension | 11h 00m 33.64811s[1] |
Declination | +03° 37′ 02.9766″[1] |
Apparent magnitude (V) | 4.852[2] |
Characteristics | |
Spectral type | K0.5 III Fe-0.5[3] |
B−V color index | 1.163[2] |
Astrometry | |
Radial velocity (Rv) | +5.98[2] km/s |
Proper motion (μ) | RA: +14.82[1] mas/yr Dec.: −16.51[1] mas/yr |
Parallax (π) | 9.05 ± 0.20[1] mas |
Distance | 360 ± 8 ly (110 ± 2 pc) |
Absolute magnitude (MV) | −1.04[4] |
Details | |
Mass | 1.89[2] M☉ |
Luminosity | 182[2] L☉ |
Surface gravity (log g) | 1.8[4] cgs |
Temperature | 4,519±52[2] K |
Metallicity [Fe/H] | −0.16±0.10[4] dex |
Age | 1.69[2] Gyr |
Other designations | |
Database references | |
SIMBAD | data |
58 Leonis is a possible binary star[6] system in the southern part of the constellation of Leo, near the border with Sextans. It shines with an apparent magnitude of 4.85,[2] making it bright enough to be seen with the naked eye. An annual parallax shift of 9.05±0.20 mas yields a distance estimate of 360 light years. It is moving further from the Sun with a heliocentric radial velocity of +6 km/s.[2]
This orange hued star is an evolved K-type giant with a stellar classification of K0.5 III Fe-0.5,[3] indicating a mild underabundance of iron in its spectrum. It was identified as a barium star by P. M. Williams (1971).[7] These are theorized to be stars that show an enrichment of s-process elements by mass transfer from a now-white dwarf companion when it passed through the asymptotic giant branch stage.[8] MacConnell et al. (1972) classified 58 Leonis as a marginal barium star.[4] De Castro et al. (2016) consider this to be only a probable barium star, because of the low degree of s-process enrichment, and they rejected it from their sample. Rather than having an evolved companion, it may instead have formed from a cloud that was mildly enriched with s-process elements.[4]
References
- ↑ 1.0 1.1 1.2 1.3 1.4 van Leeuwen, F. (2007), "Validation of the new Hipparcos reduction", Astronomy and Astrophysics 474 (2): 653–664, doi:10.1051/0004-6361:20078357, Bibcode: 2007A&A...474..653V.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Luck, R. Earle (2015), "Abundances in the Local Region. I. G and K Giants", Astronomical Journal 150 (3): 88, doi:10.1088/0004-6256/150/3/88, Bibcode: 2015AJ....150...88L.
- ↑ 3.0 3.1 Keenan, Philip C.; McNeil, Raymond C. (1989), "The Perkins catalog of revised MK types for the cooler stars", Astrophysical Journal Supplement Series 71: 245, doi:10.1086/191373, Bibcode: 1989ApJS...71..245K.
- ↑ 4.0 4.1 4.2 4.3 4.4 De Castro, D. B. et al. (2016), "Chemical abundances and kinematics of barium stars", Monthly Notices of the Royal Astronomical Society 459 (4): 4299, doi:10.1093/mnras/stw815, Bibcode: 2016MNRAS.459.4299D
- ↑ "58 Leo". SIMBAD. Centre de données astronomiques de Strasbourg. http://simbad.u-strasbg.fr/simbad/sim-basic?Ident=58+Leo.
- ↑ Eggleton, P. P.; Tokovinin, A. A. (September 2008), "A catalogue of multiplicity among bright stellar systems", Monthly Notices of the Royal Astronomical Society 389 (2): 869–879, doi:10.1111/j.1365-2966.2008.13596.x, Bibcode: 2008MNRAS.389..869E.
- ↑ Williams, P. M. (February 1971), "Abundances in five newly-discovered BA II stars", The Observatory 91: 37–39, Bibcode: 1971Obs....91...37W.
- ↑ Bergeat, J.; Knapik, A. (May 1997), "The barium stars in the Hertzsprung-Russel diagram.", Astronomy and Astrophysics 321: L9, Bibcode: 1997A&A...321L...9B.
External links
- 58 Leonis in Hipparcos stars in Leo
Original source: https://en.wikipedia.org/wiki/58 Leonis.
Read more |