Astronomy:1270 Datura

From HandWiki
Revision as of 13:28, 8 February 2024 by Gametune (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
1270 Datura
1270Datura (Lightcurve Inversion).png
Lightcurve-based 3D-model of Datura
Discovery[1]
Discovered byG. van Biesbroeck
Discovery siteYerkes Obs.
Discovery date17 December 1930
Designations
(1270) Datura
Pronunciation/dəˈtʊərə, -tjʊərə/[5]
Named afterDatura stramonium[2]
(flowering plant)
1930 YE · 1953 XF1
A913 VB
Minor planet categorymain-belt[1][3] · (inner)
Datura[4]
Orbital characteristics[3]
Epoch 23 March 2018 (JD 2458200.5)
Uncertainty parameter 0
Observation arc87.43 yr (31,934 d)
|{{{apsis}}}|helion}}2.7003 AU
|{{{apsis}}}|helion}}1.7681 AU
2.2342 AU
Eccentricity0.2086
Orbital period3.34 yr (1,220 d)
Mean anomaly122.36°
Mean motion0° 17m 42.36s / day
Inclination5.9859°
Longitude of ascending node97.802°
258.98°
Physical characteristics
Mean diameter7.83±0.37 km[6]
8.203±0.152 km[7][8]
Rotation period3.359 h[9]
Geometric albedo0.288[7][8]
0.291[6]
S[9]
Absolute magnitude (H)12.40[7][8]
12.50[1][3][6]
12.61±0.12[10][11]


1270 Datura, provisional designation 1930 YE is a stony asteroid and namesake of the young Datura family, located in the inner regions of the asteroid belt, approximately 8 kilometers (5 miles) in diameter. It was discovered on 17 December 1930, by Belgian–American George Van Biesbroeck at the Yerkes Observatory in Williams Bay, Wisconsin, United States.[1] The S-type asteroid has a rotation period of 3.4 hours.[12] It was named after the flowering plant Datura.[2]

Orbit and classification

Datura is the principal body of the tiny Datura family (411) located within the Flora family region (402),[4] which is one of the largest clans of asteroid families.[13] The Datura family is thought to have recently formed from the collisional destruction of a larger parent body some 450–600 thousand years ago.[9][14]

The asteroid orbits the Sun in the inner asteroid belt at a distance of 1.8–2.7 AU once every 3 years and 4 months (1,220 days; semi-major axis of 2.23 AU). Its orbit has an eccentricity of 0.21 and an inclination of 6° with respect to the ecliptic.[3] In November 1913, Datura was first observed as A913 VB at Winchester Observatory (799) in Massachusetts, United States. The body's observation arc begins with its official discovery observation at Williams Bay in December 1930.[1]

Naming

This minor planet was named after the Datura, a genus of poisonous flowering plants.[2] The official naming citation was mentioned in The Names of the Minor Planets by Paul Herget in 1955 (H 116).[2]

Physical characteristics

Datura's spectrum is similar to that of an old S-type asteroid, thought to consist of silicate rocks covered with regolith with composition known from ordinary chondrite.[9] This is in agreement with the overall spectral type of both the Datura and the encompassing Flora family.[15]:23

Rotation period

In February 2008, a rotational lightcurve of Datura was obtained from photometric observations by Naruhisa Takato using the Subaru telescope on Hawaii. Lightcurve analysis gave a sidereal rotation period of 3.359±0.001 hours with a brightness amplitude of 0.46 magnitude ({{{1}}}).[9] The result is similar to observations by Wisniewski (3.2 h),[11] Vokrouhlický (3.3583 h),[14] and Székely (3.4 h).[16]

In 2013, lightcurve modelling by an international study using photometric data from the US Naval Observatory, the Uppsala Asteroid Photometric Catalogue and the Palmer Divide Observatory, gave a concurring rotation period of 3.358100 hours as well as a spin axis of (0°, 59.0°) in ecliptic coordinates (λ, β).[17] An improved spin-axis determination by Vokrouhlický gave two poles at (60.0°, 76.0°) and (264.0°, 77.0°), respectively.[14]

Diameter and albedo

According to the surveys carried out by the Japanese Akari satellite and the NEOWISE mission of NASA's Wide-field Infrared Survey Explorer, Datura measures 7.83 and 8.20 kilometers in diameter and its surface has an albedo of 0.291 and 0.288, respectively.[6][7][8] The Collaborative Asteroid Lightcurve Link assumes an albedo of 0.24 – taken from 8 Flora, the principal body of the Flora family – and derives a diameter of 8.15 kilometers based on an absolute magnitude of 12.61.[12]

References

  1. 1.0 1.1 1.2 1.3 1.4 "1270 Datura (1930 YE)". Minor Planet Center. https://www.minorplanetcenter.net/db_search/show_object?object_id=1270. Retrieved 31 July 2018. 
  2. 2.0 2.1 2.2 2.3 Schmadel, Lutz D. (2007). "(1270) Datura". Dictionary of Minor Planet Names. Springer Berlin Heidelberg. p. 105. doi:10.1007/978-3-540-29925-7_1271. ISBN 978-3-540-00238-3. 
  3. 3.0 3.1 3.2 3.3 "JPL Small-Body Database Browser: 1270 Datura (1930 YE)". Jet Propulsion Laboratory. https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2001270. Retrieved 31 July 2018. 
  4. 4.0 4.1 "Asteroid 1270 Datura". Small Bodies Data Ferret. https://sbntools.psi.edu/ferret/SimpleSearch/results.action?targetName=1270+Datura. Retrieved 31 July 2018. 
  5. Datura (3rd ed.), Oxford University Press, September 2005, http://oed.com/search?searchType=dictionary&q=Datura  (Subscription or UK public library membership required.)
  6. 6.0 6.1 6.2 6.3 Usui, Fumihiko; Kuroda, Daisuke; Müller, Thomas G.; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi et al. (October 2011). "Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey". Publications of the Astronomical Society of Japan 63 (5): 1117–1138. doi:10.1093/pasj/63.5.1117. Bibcode2011PASJ...63.1117U.  (online, AcuA catalog p. 153)
  7. 7.0 7.1 7.2 7.3 Mainzer, A. K.; Bauer, J. M.; Cutri, R. M.; Grav, T.; Kramer, E. A.; Masiero, J. R. et al. (June 2016). "NEOWISE Diameters and Albedos V1.0". NASA Planetary Data System: EAR-A-COMPIL-5-NEOWISEDIAM-V1.0. Bibcode2016PDSS..247.....M. https://sbnarchive.psi.edu/pds3/non_mission/EAR_A_COMPIL_5_NEOWISEDIAM_V1_0/data/neowise_mainbelt.tab. Retrieved 30 August 2018. 
  8. 8.0 8.1 8.2 8.3 Masiero, Joseph R.; Mainzer, A. K.; Grav, T.; Bauer, J. M.; Cutri, R. M.; Nugent, C. et al. (November 2012). "Preliminary Analysis of WISE/NEOWISE 3-Band Cryogenic and Post-cryogenic Observations of Main Belt Asteroids". The Astrophysical Journal Letters 759 (1): 5. doi:10.1088/2041-8205/759/1/L8. Bibcode2012ApJ...759L...8M. 
  9. 9.0 9.1 9.2 9.3 9.4 Takato, Naruhisa (October 2008). "Rotation-Resolved Spectroscopy of a Very Young Asteroid, (1270) Datura". The Astrophysical Journal Letters 685 (2): L161. doi:10.1086/592569. Bibcode2008ApJ...685L.161T. 
  10. Pravec, Petr; Harris, Alan W.; Kusnirák, Peter; Galád, Adrián; Hornoch, Kamil (September 2012). "Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations". Icarus 221 (1): 365–387. doi:10.1016/j.icarus.2012.07.026. Bibcode2012Icar..221..365P. http://adsabs.harvard.edu/cgi-bin/bib_query?bibcode=2012Icar..221..365P. Retrieved 30 August 2018. 
  11. 11.0 11.1 Wisniewski, W. Z.; Michalowski, T. M.; Harris, A. W.; McMillan, R. S. (April 1997). "Photometric Observations of 125 Asteroids". Icarus 126 (2): 395–449. doi:10.1006/icar.1996.5665. Bibcode1997Icar..126..395W. http://adsabs.harvard.edu/cgi-bin/bib_query?bibcode=1997Icar..126..395W. Retrieved 30 August 2018. 
  12. 12.0 12.1 "LCDB Data for (1270) Datura". Asteroid Lightcurve Database (LCDB). http://www.minorplanet.info/PHP/generateOneAsteroidInfo.php?AstInfo=1270%7CDatura. Retrieved 30 August 2018. 
  13. Nesvorný, D.; Broz, M.; Carruba, V. (December 2014). "Identification and Dynamical Properties of Asteroid Families". Asteroids IV. pp. 297–321. doi:10.2458/azu_uapress_9780816532131-ch016. ISBN 9780816532131. Bibcode2015aste.book..297N. 
  14. 14.0 14.1 14.2 Vokrouhlický, D.; Durech, J.; Michalowski, T.; Krugly, Yu. N.; Gaftonyuk, N. M.; Kryszczynska, A. et al. (November 2009). "Datura family: the 2009 update". Astronomy and Astrophysics 507 (1): 495–504. doi:10.1051/0004-6361/200912696. Bibcode2009A&A...507..495V. https://www.aanda.org/articles/aa/pdf/2009/43/aa12696-09.pdf. Retrieved 30 August 2018. 
  15. Nesvorny, D.; Vokrouhlický, D.; Bottke, W. F. (June 2006). "The Breakup of a Main-Belt Asteroid 450 Thousand Years Ago". Science 312 (5779): 1490. doi:10.1126/science.1126175. PMID 16763141. Bibcode2006Sci...312.1490N. http://www.boulder.swri.edu/~bottke/Reprints/Nesvorny_Vok_Bottke_Science_2006_Datura_breakup.pdf. Retrieved 31 July 2018. 
  16. Székely, P.; Kiss, L. L.; Szabó, Gy. M.; Sárneczky, K.; Csák, B.; Váradi, M. et al. (August 2005). "CCD photometry of 23 minor planets". Planetary and Space Science 53 (9): 925–936. doi:10.1016/j.pss.2005.04.006. Bibcode2005P&SS...53..925S. http://adsabs.harvard.edu/cgi-bin/bib_query?bibcode=2005P&SS...53..925S. Retrieved 30 August 2018. 
  17. Durech, J.; Kaasalainen, M.; Warner, B. D.; Fauerbach, M.; Marks, S. A.; Fauvaud, S. et al. (January 2009). "Asteroid models from combined sparse and dense photometric data". Astronomy and Astrophysics 493 (1): 291–297. doi:10.1051/0004-6361:200810393. Bibcode2009A&A...493..291D. https://www.aanda.org/articles/aa/pdf/2009/01/aa10393-08.pdf. Retrieved 24 August 2017. 

External links