Astronomy:10 Canum Venaticorum
Observation data Equinox J2000.0]] (ICRS) | |
---|---|
Constellation | Canes Venatici |
Right ascension | 12h 44m 59.405s[1] |
Declination | +39° 16′ 44.10″[1] |
Apparent magnitude (V) | 5.95[2] |
Characteristics | |
Evolutionary stage | Main sequence |
Spectral type | G0 V[2] |
U−B color index | –0.03[3] |
B−V color index | +0.55[3] |
Astrometry | |
Radial velocity (Rv) | +80.3[4] km/s |
Proper motion (μ) | RA: –359.699[1] mas/yr Dec.: +139.016[1] mas/yr |
Parallax (π) | 56.9588 ± 0.0323[1] mas |
Distance | 57.26 ± 0.03 ly (17.557 ± 0.010 pc) |
Absolute magnitude (MV) | 4.76[5] |
Details | |
Mass | 0.87+0.04 −0.03[6] M☉ |
Radius | 0.98±0.02[7] R☉ |
Luminosity | 1.104±0.002[7] L☉ |
Surface gravity (log g) | 4.29[2] cgs |
Temperature | 5,968+58 −41[7] K |
Metallicity [Fe/H] | –0.53[2] dex |
Rotation | 13 days[5] |
Rotational velocity (v sin i) | 8.11[8] km/s |
Age | 6.3[2] Gyr |
Other designations | |
Database references | |
SIMBAD | data |
10 Canum Venaticorum is the Flamsteed designation for an ordinary star in the northern constellation of Canes Venatici. It has an apparent visual magnitude of 5.95,[2] which, according to the Bortle scale, can be faintly seen with the naked eye from suburban locations. Based upon an annual parallax shift of 0.057 arcseconds,[1] this system is 57.26 light-years (17.557 parsecs) from Sun. It is drifting further away with a radial velocity of +80 km/s.[4]
The stellar classification of 10 Canum Venaticorum is G0 V,[2] indicating that it is a G-type main sequence star that is fusing hydrogen into helium at its core to generate energy. The NStars project found a similar class of F9V Fe−0.3,[10] indicating a mild underabundance of iron. It is older than the Sun, with an estimated age of six billion years.[2] The star has around 98%[7] of the Sun's radius and 87%[6] of the solar mass. It rotates about the axis an average of once every 13 days,[5] with a projected rotational velocity along the equator of 8 km/s.[8] The abundance of elements other than hydrogen and helium is lower than in the Sun.[2] The effective temperature of the stellar atmosphere is 5,968 K,[7] giving it the yellow hue of a G-type star.[11]
An excess of infrared emission at a wavelength of 70 μm suggests the presence of a debris disk.[12] The best fit disk model suggest a broad dust annulus with a peak brightness at a radius of 53.7 AU, that is inclined by an angle of 56° to the line of sight from the Earth along a position angle of 111.2°.[5]
References
- ↑ 1.0 1.1 1.2 1.3 1.4 Brown, A. G. A. (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics 649: A1. doi:10.1051/0004-6361/202039657. Bibcode: 2021A&A...649A...1G. Gaia EDR3 record for this source at VizieR.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Maldonado, J. et al. (May 2012), "Metallicity of solar-type stars with debris discs and planets", Astronomy and Astrophysics 541: A40, doi:10.1051/0004-6361/201218800, Bibcode: 2012A&A...541A..40M.
- ↑ 3.0 3.1 Johnson, H. L. et al. (1966), "UBVRIJKL photometry of the bright stars", Communications of the Lunar and Planetary Laboratory 4 (99): 99, Bibcode: 1966CoLPL...4...99J.
- ↑ 4.0 4.1 Nordström, B. et al. (May 2004), "The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14,000 F and G dwarfs", Astronomy and Astrophysics 418: 989–1019, doi:10.1051/0004-6361:20035959, Bibcode: 2004A&A...418..989N.
- ↑ 5.0 5.1 5.2 5.3 Marshall, J. P. et al. (October 2014), "Interpreting the extended emission around three nearby debris disc host stars", Astronomy & Astrophysics 570: 13, doi:10.1051/0004-6361/201424517, A114, Bibcode: 2014A&A...570A.114M.
- ↑ 6.0 6.1 Ramírez, I. et al. (September 2012). "Lithium Abundances in nearby FGK Dwarf and Subgiant Stars: Internal Destruction, Galactic Chemical Evolution, and Exoplanets". The Astrophysical Journal 756 (1): 46. doi:10.1088/0004-637X/756/1/46. Bibcode: 2012ApJ...756...46R.
- ↑ 7.0 7.1 7.2 7.3 7.4 Brown, A. G. A. (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics 616: A1. doi:10.1051/0004-6361/201833051. Bibcode: 2018A&A...616A...1G. Gaia DR2 record for this source at VizieR.
- ↑ 8.0 8.1 Martínez-Arnáiz, R. et al. (September 2010), "Chromospheric activity and rotation of FGK stars in the solar vicinity. An estimation of the radial velocity jitter", Astronomy and Astrophysics 520: A79, doi:10.1051/0004-6361/200913725, Bibcode: 2010A&A...520A..79M, http://eprints.ucm.es/37826/1/davidmontes17libre.pdf, retrieved 2018-11-04.
- ↑ "10 CVn -- High proper-motion Star", SIMBAD Astronomical Database (Centre de Données astronomiques de Strasbourg), http://simbad.u-strasbg.fr/simbad/sim-id?Ident=10+Canum+Venaticorum, retrieved 2014-01-26.
- ↑ Gray, R. O. et al. (July 2006). "Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 parsecs: The Northern Sample I". The Astronomical Journal 132 (1): 161–170. doi:10.1086/504637. Bibcode: 2006AJ....132..161G. https://archive.org/details/sim_astronomical-journal_2006-07_132_1/page/161.
- ↑ "The Colour of Stars", Australia Telescope, Outreach and Education (Commonwealth Scientific and Industrial Research Organisation), December 21, 2004, archived from the original on March 18, 2012, https://web.archive.org/web/20120318151427/http://outreach.atnf.csiro.au/education/senior/astrophysics/photometry_colour.html, retrieved 2012-01-16.
- ↑ Trilling, D. E. et al. (February 2008), "Debris Disks around Sun-like Stars", The Astrophysical Journal 674 (2): 1086–1105, doi:10.1086/525514, Bibcode: 2008ApJ...674.1086T.
Original source: https://en.wikipedia.org/wiki/10 Canum Venaticorum.
Read more |