Biology:Pseudokinase

From HandWiki
Revision as of 01:42, 13 February 2024 by Gametune (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Catalytically deficient pseudoenzyme forms of kinase proteins

Pseudokinases are catalytically-deficient pseudoenzyme[1] variants of protein kinases that are represented in all kinomes across the kingdoms of life. Pseudokinases have both physiological (signal transduction) and pathophysiological functions.[2][3][4][5][6][7][8]

History

The phrase pseudokinase was first coined in 2002.[9] They were subsequently sub-classified into different 'classes'.[10][8][11][12][13] Several pseudokinase-containing families are found in the human kinome, including the Tribbles pseudokinases, which are at the interface between kinase and ubiquitin E3 ligase signalling.[14][15][16]

The human pseudokinases (and their pseudophosphatase cousins) are implicated in a wide variety of diseases,[17][18] which has made them potential drug targets and antitargets).[19][20][21][22] Pseudokinases are made up of an evolutionary mixture of eukaryotic protein kinase (ePK) and non ePK-related pseudoenzyme proteins (e.g., FAM20A, which binds ATP[23] and is pseudokinase due to a conserved glutamate to glutamine swap in the alpha-C helix.[24] FAM20A is implicated in periodontal disease, and serves to control the catalytic activity of FAM20C, an important physiological casein kinase that controls phosphorylation of proteins in the Golgi apparatus that are destined for secretion,[25] such as the milk protein casein.

A comprehensive evolutionary analysis confirms that pseudokinases group into multiple subfamilies, and these are found in the annotated kinome of organisms across the kingdoms of life, including prokaryotes, archaea and all eukaryotic lineages with an annotated proteome; this data is searchable in ProKino (http://vulcan.cs.uga.edu/prokino/about/browser). [26]

See also

References

  1. "Bio-Zombie: the rise of pseudoenzymes in biology". Biochemical Society Transactions 45 (2): 537–544. April 2017. doi:10.1042/BST20160400. PMID 28408493. 
  2. "The secret life of kinases: insights into non-catalytic signalling functions from pseudokinases". Biochemical Society Transactions 45 (3): 665–681. June 2017. doi:10.1042/BST20160331. PMID 28620028. 
  3. "A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties". The Biochemical Journal 457 (2): 323–34. January 2014. doi:10.1042/BJ20131174. PMID 24107129. 
  4. "Rethinking pseudokinases". Cell 133 (2): 204–5. April 2008. doi:10.1016/j.cell.2008.04.005. PMID 18423189. 
  5. "CASK Functions as a Mg2+-independent neurexin kinase". Cell 133 (2): 328–39. April 2008. doi:10.1016/j.cell.2008.02.036. PMID 18423203. 
  6. "The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner". The Biochemical Journal 467 (1): 47–62. April 2015. doi:10.1042/BJ20141441. PMID 25583260. 
  7. "ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation". Proceedings of the National Academy of Sciences of the United States of America 107 (17): 7692–7. April 2010. doi:10.1073/pnas.1002753107. PMID 20351256. PMC 2867849. Bibcode2010PNAS..107.7692S. http://repository.upenn.edu/cgi/viewcontent.cgi?article=1176&context=be_papers. 
  8. 8.0 8.1 "Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation". Science 326 (5960): 1707–11. December 2009. doi:10.1126/science.1178377. PMID 19892943. Bibcode2009Sci...326.1707Z. 
  9. "The protein kinase complement of the human genome". Science 298 (5600): 1912–34. December 2002. doi:10.1126/science.1075762. PMID 12471243. Bibcode2002Sci...298.1912M. 
  10. "Emerging roles of pseudokinases". Trends in Cell Biology 16 (9): 443–52. September 2006. doi:10.1016/j.tcb.2006.07.003. PMID 16879967. 
  11. "Pseudokinases-remnants of evolution or key allosteric regulators?". Current Opinion in Structural Biology 20 (6): 772–81. December 2010. doi:10.1016/j.sbi.2010.10.001. PMID 21074407. 
  12. "Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site". Structure 17 (1): 128–38. January 2009. doi:10.1016/j.str.2008.10.018. PMID 19141289. 
  13. "Dawn of the dead: protein pseudokinases signal new adventures in cell biology". Biochemical Society Transactions 41 (4): 969–74. August 2013. doi:10.1042/BST20130115. PMID 23863165. 
  14. "Tribbles in the 21st Century: The Evolving Roles of Tribbles Pseudokinases in Biology and Disease". Trends in Cell Biology 27 (4): 284–298. April 2017. doi:10.1016/j.tcb.2016.11.002. PMID 27908682. 
  15. "Covalent inhibitors of EGFR family protein kinases induce degradation of human Tribbles 2 (TRIB2) pseudokinase in cancer cells.". Science Signaling 11 (549): eaat7951. September 2018. doi:10.1126/scisignal.aat7951. PMID 30254057. 
  16. "Substrate binding allosterically relieves autoinhibition of the pseudokinase TRIB1". Science Signaling 11 (549): eaau0597. September 2018. doi:10.1126/scisignal.aau0597. PMID 30254053. 
  17. "Day of the dead: pseudokinases and pseudophosphatases in physiology and disease". Trends in Cell Biology 24 (9): 489–505. September 2014. doi:10.1016/j.tcb.2014.03.008. PMID 24818526. 
  18. "Genomics and evolution of protein phosphatases". Science Signaling 10 (474): eaag1796. April 2017. doi:10.1126/scisignal.aag1796. PMID 28400531. 
  19. "Pseudokinases: update on their functions and evaluation as new drug targets". Future Medicinal Chemistry 9 (2): 245–265. January 2017. doi:10.4155/fmc-2016-0207. PMID 28097887. 
  20. "Going for broke: targeting the human cancer pseudokinome". The Biochemical Journal 465 (2): 195–211. January 2015. doi:10.1042/BJ20141060. PMID 25559089. 
  21. "Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases". Future Medicinal Chemistry 6 (5): 541–61. April 2014. doi:10.4155/fmc.13.216. PMID 24649957. 
  22. "Tribbles pseudokinases: novel targets for chemical biology and drug discovery?". Biochemical Society Transactions 43 (5): 1095–103. October 2015. doi:10.1042/BST20150109. PMID 26517930. 
  23. "Structure of Fam20A reveals a pseudokinase featuring a unique disulfide pattern and inverted ATP-binding". eLife 6. April 2017. doi:10.7554/eLife.23990. PMID 28432788. 
  24. "A secretory kinase complex regulates extracellular protein phosphorylation". eLife 4: e06120. March 2015. doi:10.7554/eLife.06120. PMID 25789606. 
  25. "A Single Kinase Generates the Majority of the Secreted Phosphoproteome". Cell 161 (7): 1619–32. June 2015. doi:10.1016/j.cell.2015.05.028. PMID 26091039. 
  26. "Tracing the origin and evolution of pseudokinases across the tree of life". Science Signaling 12 (578): eaav3810. April 2019. doi:10.1126/scisignal.aav3810. PMID 31015289. 

Further reading

External links