Chemistry:Thyroid's secretory capacity

From HandWiki
Revision as of 23:13, 5 February 2024 by Nautica (talk | contribs) (add)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Thyroid's secretory capacity
Medical diagnostics
Reference ranges for TSH, FT4, JTI and SPINA-GT
Reference ranges for SPINA-GT and other thyroid function tests
SynonymsSPINA-GT, GT, T4 output, thyroid hormone output, thyroid's incretory capacity, functional thyroid capacity[1]
Reference range1.41–8.67 pmol/s
Test ofMaximum amount of T4 produced by the thyroid in one second
MeSHD013960
LOINC82368-2

Thyroid's secretory capacity (GT, also referred to as thyroid's incretory capacity, maximum thyroid hormone output, T4 output or, if calculated from serum levels of thyrotropin and thyroxine, as SPINA-GT[lower-alpha 1]) is the maximum stimulated amount of thyroxine that the thyroid can produce in a given time-unit (e.g. one second).[2][3]

How to determine GT

Experimentally, GT can be determined by stimulating the thyroid with a high thyrotropin concentration (e.g. by means of rhTSH, i.e. recombinant human thyrotropin) and measuring its output in terms of T4 production, or by measuring the serum concentration of protein-bound iodine-131 after administration of radioiodine.[4] These approaches are, however, costly and accompanied by significant exposure to radiation.[5]

In vivo, GT can also be estimated from equilibrium levels of TSH and T4 or free T4. In this case it is calculated with

[math]\displaystyle{ \hat G_T = {{\beta _T (D_T + [TSH])(1 + K_{41} [TBG] + K_{42} [TBPA])[FT_4 ]} \over {\alpha _T [TSH]}} }[/math]

or

[math]\displaystyle{ \hat G_T = {{\beta _T (D_T + [TSH])[TT_4 ]} \over {\alpha _T [TSH]}} }[/math]

[TSH]: Serum thyrotropin concentration (in mIU/L or μIU/mL)
[FT4]: Serum free T4 concentration (in pmol/L)
[TT4]: Serum total T4 concentration (in nmol/L)
[math]\displaystyle{ \hat G_T }[/math]: Theoretical (apparent) secretory capacity (SPINA-GT)
[math]\displaystyle{ \alpha _T }[/math]: Dilution factor for T4 (reciprocal of apparent volume of distribution, 0.1 L−1)
[math]\displaystyle{ \beta _T }[/math]: Clearance exponent for T4 (1.1e-6 sec−1), i. e., reaction rate constant for degradation
K41: Binding constant T4-TBG (2e10 L/mol)
K42: Binding constant T4-TBPA (2e8 L/mol)
DT: EC50 for TSH (2.75 mU/L)[2][6]

The method is based on mathematical models of thyroid homeostasis.[2][3] Calculating the secretory capacity with one of these equations is an inverse problem. Therefore, certain conditions (e.g. stationarity) have to be fulfilled to deliver a reliable result.

Specific secretory capacity

The ratio of SPINA-GT and thyroid volume VT (as determined e.g. by ultrasonography)

[math]\displaystyle{ \hat{G}_{TS}=\frac{\hat{G}_{T}}{{V}_{T}} }[/math],

i.e.

[math]\displaystyle{ \hat{G}_{TS}=\frac{\beta_{T}(D_{T}+[TSH])(1+K_{41}[TBG]+K_{ 42 }[TBPA])[FT_{4}]}{{\alpha_{T}[TSH]{V}_{T}}} }[/math]

or

[math]\displaystyle{ \hat{G}_{TS}=\frac{{{\beta_{T}(D_{T}+[TSH])[TT_{4}]}}}{{\alpha_{T}[TSH]{V}_{T}}} }[/math]

is referred to as specific thyroid capacity (SPINA-GTs).[7] It is a measure for how much one millilitre of thyroid tissue can produce under conditions of maximum stimulation. Thereby, SPINA-GTs is an estimate for the endocrine quality of thyroid tissue.[citation needed]

Reference Range

SPINA-GT percentiles
Percentiles for thyroid's secretory capacity (SPINA-GT) along with reference ranges for Jostel's TSH index (TSHI or JTI) and univariable reference ranges for thyrotropin (TSH) and free thyroxine (FT4), shown in the two-dimensional phase plane defined by serum concentrations of TSH and FT4.
Lower limit Upper limit Unit
1.41[2] 8.67[2] pmol/s

The equations and their parameters are calibrated for adult humans with a body mass of 70 kg and a plasma volume of ca. 2.5 L.[2]

Clinical significance

Validity

SPINA-GT is elevated in primary hyperthyroidism[8][9] and reduced in both primary hypothyroidism[10][11][12][9] and untreated autoimmune thyroiditis.[13] It has been observed to correlate (with positive direction) to resting energy expenditure,[14] resting heart rate,[15] the colour Doppler ultrasound pattern[16] and thyroid volume,[2][7] and (with negative direction) to thyroid autoantibody titres, which reflect organ destruction due to autoimmunity.[17] Elevated SPINA-GT in Graves' disease is reversible with antithyroid treatment.[14] While SPINA-GT is significantly altered in primary thyroid disorders, it is insensitive to disorders of secondary nature (e.g. pure pituitary diseases).[3]

Reliability

In silico experiments with Monte Carlo simulations demonstrated that both SPINA-GT and SPINA-GD can be estimated with sufficient reliability, even if laboratory assays have limited accuracy.[3] This was confirmed by longitudinal in vivo studies that showed that GT has lower intraindividual variation (i.e. higher reliability) than TSH, FT4 or FT3.[18]

Clinical utility

In clinical trials SPINA-GT was significantly elevated in patients with Graves' disease and toxic adenoma compared to normal subjects.[2][8][19] It is also elevated in diffuse and nodular goiters, and reduced in untreated autoimmune thyroiditis.[2][13] In patients with toxic adenoma it has higher specificity and positive likelihood ratio for diagnosis of thyrotoxicosis than serum concentrations of thyrotropin, free T4 or free T3.[2] GT's specificity is also high in thyroid disorders of secondary or tertiary origin.[3]

Calculating SPINA-GT has proved to be useful in challenging clinical situations, e.g. for differential diagnosis of subclinical hypothyroidism and elevated TSH concentration due to type 2 allostatic load (as it is typical for obesity and certain psychiatric diseases). For this purpose, its usage has been recommended in sociomedical assessment.[20]

Pathophysiological and therapeutic implications

In patients suffering from toxic adenoma, toxic multinodular goitre and Graves’ disease SPINA-GT significantly decreases due to radioiodine therapy.[19]

Correlation of SPINA-GT with creatinine clearance suggests a negative influence of uremic toxins on thyroid biology.[21][22] In the initial phase of major non-thyroidal illness syndrome (NTIS) SPINA-GT may be temporarily elevated.[23][24] In chronic NTIS[25] as well as in certain non-critical chronic diseases, e.g. chronic fatigue syndrome[26][27] or asthma[28] SPINA-GT is slightly reduced.

According to the results of a community-based study in China it was associated to sleep duration and exercise habits.[29] With respect to iodine supply, it showed a complex U-shaped pattern, being reduced in subjects consuming iodine-rich food, but elevated in situations of iodine excess.[29] In two other studies from China, SPINA-GT correlated with negative direction to markers of obesity including body mass index, waist circumference and waist to hip ratio.[30][31] This doesn't seem to be the case, however, in Western populations.[32]

In women, therapy with Metformin results in increased SPINA-GT, in parallel to improved insulin sensitivity.[33][34] This observation was reproducible in men with hypogonadism, but not in men with normal testosterone concentrations,.[35] In postmenopausal women this effect was only observed in subjects on oestradiol replacement therapy.[36] Therefore, the described phenomenon seems to depend on an interaction of metformin with sex hormones.[35][37] In hyperthyroid[8] men both SPINA-GT and SPINA-GD negatively correlate to erectile function, intercourse satisfaction, orgasmic function and sexual desire. Likewise, in women with thyrotoxicosis elevated thyroid's secretory capacity predicts depression and sexual dysfunction.[38] Conversely, in androgen-deficient men with concomitant autoimmune thyroiditis, substitution therapy with testosterone leads to a decrease in thyroid autoantibody titres and an increase in SPINA-GT.[39]

SPINA-GT is reduced in persons suffering from hidradenitis suppurativa compared to healthy controls with the same sex and age distribution.[40] This phenomenon has been ascribed to B-cell-mediated hypothyroidism, i.e. hypothyroid Graves' disease due to inhibiting TSH receptor autoantibodies (iTRAb).[40]

In patients with autoimmune thyroiditis a gluten-free diet results in increased SPINA-GT (in parallel to sinking autoantibody titres).[41] Statin therapy has the same effect, but only if supply with vitamin D is sufficient.[42] Accordingly, substitution therapy with 25-hydroxyvitamin D leads to rising secretory capacity.[43][44][45][46] This effect is potentiated by substitution therapy with myo-inositol[47] and selenomethionine[43][44][48] or, in women, with dehydroepiandrosterone,[49] but impaired in males with early-onset androgenic alopecia.[50] The effects of vitamin D and selenomethionine are attenuated in hyperprolactinaemia, suggesting an inhibitory effect of prolactin.[51] Although both vitamin D supplementation and gluten-free diet result in increased SPINA-GT, there seems to be a complex interaction between both therapeutic measures, since vitamin D treatment is only able to elevate the thyroid's secretory capacity in subjects not following any dietary recommendation.[52]

On the other hand, men treated with spironolactone are faced with decreasing SPINA-GT (in addition to rising thyroid antibody titres).[53] It has, therefore, been concluded that spironolactone may aggravate thyroid autoimmunity in men.[53]

In subjects with type 2 diabetes, treatment with beta blockers resulted in decreased SPINA-GT, suggesting sympathetic innervation to contribute to the control of thyroid function.[54] In diabetic women, but not in men, SPINA-GT shows a positive correlation to the β-C-terminal cross-linked telopeptides of type I collagen (β-CTX), a marker of bone resorption.[55] In both diabetic and non-diabetic persons it correlates (negatively) with age and (positively) with the concentrations of troponin T and HbA1c.[56]

A study in euthyroid subjects with structural heart disease found that increased SPINA-GT predicts the risk of malignant arrhythmia including ventricular fibrillation and ventricular tachycardia.[57] This applies to both incidence and event-free survival.[57] Likewise, SPINA-GT is elevated in a significant subgroup of patients with takotsubo syndrome.[58] A stress-mediated effect on SPINA-GT is also suggested by the observation that it is increased in persons with a history of psychological trauma.[59] On the other hand, two studies found negative correlation between SPINA-GT and markers of dispersion in cardiac repolarisation, including Tp-e interval, JT interval, Tp-e/ QT ratio and Tp-e/QTc ratio. These results suggest that reduced thyroid function may trigger cardiovascular mortality as well.[60][9]

Among subjects with Parkinson's disease, SPINA-GT is significantly elevated in tremor-dominant and mixed subtypes compared to the akinetic-rigid type.[61]

Specific secretory capacity (SPINA-GTs) is reduced in obesity[2] and autoimmune thyroiditis.[7][62]

Endocrine disruptors may affect stimulated thyroid output, as demonstrated by a positive correlation of SPINA-GT with exposure to 2-hydroxynaphthalene (2-NAP),[63] urinary mercury concentration[64] and the excretion of certain phthalate metabolites,[65] and negative correlation with combined exposure to polycyclic aromatic hydrocarbons (PAHs)[63] and nickel.[66] Additionally, SPINA-GT was altered in young people exposed to butylparaben.[67]

See also

Notes

  1. SPINA is an acronym for "structure parameter inference approach".

References

  1. Hoermann, R; Midgley, JEM; Larisch, R; Dietrich, JW (4 August 2021). "Treatment options for subclinical hypothyroidism.". European Journal of Endocrinology 185 (3): L5–L6. doi:10.1530/EJE-20-1405. PMID 34243143. 
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 Dietrich, J. W. (2002). Der Hypophysen-Schilddrüsen-Regelkreis. Berlin, Germany: Logos-Verlag Berlin. ISBN 978-3-89722-850-4. OCLC 50451543. 
  3. 3.0 3.1 3.2 3.3 3.4 Dietrich, Johannes W.; Landgrafe-Mende, Gabi; Wiora, Evelin; Chatzitomaris, Apostolos; Klein, Harald H.; Midgley, John E. M.; Hoermann, Rudolf (9 June 2016). "Calculated Parameters of Thyroid Homeostasis: Emerging Tools for Differential Diagnosis and Clinical Research". Frontiers in Endocrinology 7: 57. doi:10.3389/fendo.2016.00057. PMID 27375554. 
  4. Bierich, J. R. (1964). "Endokrinologie". in H. Wiesener. Einführung in die Entwicklungsphysiologie des Kindes. Springer. pp. 310. ISBN 978-3-642-86507-7. 
  5. Thompson, MA (June 2001). "Radiation safety precautions in the management of the hospitalized (131)I therapy patient.". Journal of Nuclear Medicine Technology 29 (2): 61–6; test 74–5. PMID 11376097. 
  6. "The AQUA-FONTIS study: protocol of a multidisciplinary, cross-sectional and prospective longitudinal study for developing standardized diagnostics and classification of non-thyroidal illness syndrome". BMC Endocrine Disorders 8 (1): 13. Oct 2008. doi:10.1186/1472-6823-8-13. PMID 18851740. 
  7. 7.0 7.1 7.2 Hoermann, Rudolf; Midgley, John E.M.; Larisch, Rolf; Dietrich, Johannes W. (18 August 2016). "Relational Stability of Thyroid Hormones in Euthyroid Subjects and Patients with Autoimmune Thyroid Disease". European Thyroid Journal 5 (3): 171–179. doi:10.1159/000447967. PMID 27843807. 
  8. 8.0 8.1 8.2 Krysiak, R; Marek, B; Okopień, B (2019). "Sexual function and depressive symptoms in men with overt hyperthyroidism.". Endokrynologia Polska 70 (1): 64–71. doi:10.5603/EP.a2018.0069. PMID 30307028. 
  9. 9.0 9.1 9.2 Aweimer, Assem; Schiedat, Fabian; Schöne, Dominik; Landgrafe-Mende, Gabi; Bogossian, Harilaos; Mügge, Andreas; Patsalis, Polykarpos C.; Gotzmann, Michael et al. (23 November 2021). "Abnormal Cardiac Repolarization in Thyroid Diseases: Results of an Observational Study". Frontiers in Cardiovascular Medicine 8: 738517. doi:10.3389/fcvm.2021.738517. PMID 34888359. 
  10. Dietrich, J.; Fischer, M.; Jauch, J.; Pantke, E.; Gärtner, R.; Pickardt, C. R.. "SPINA-THYR: A Novel Systems Theoretic Approach to Determine the Secretion Capacity of the Thyroid Gland". European Journal of Internal Medicine 10 (Suppl. 1): S34. https://www.researchgate.net/publication/233529705. 
  11. Dietrich JW (Sep 2012). "Thyroid storm". Medizinische Klinik, Intensivmedizin und Notfallmedizin 107 (6): 448–53. doi:10.1007/s00063-012-0113-2. PMID 22878518. 
  12. Wang, X; Liu, H; Chen, J; Huang, Y; Li, L; Rampersad, S; Qu, S (21 April 2016). "Metabolic Characteristics in Obese Patients Complicated by Mild Thyroid Hormone Deficiency". Hormone and Metabolic Research 48 (5): 331–7. doi:10.1055/s-0042-105150. PMID 27101096. 
  13. 13.0 13.1 Hoermann, R; Midgley, JEM; Larisch, R; Dietrich, JW (19 July 2018). "The Role of Functional Thyroid Capacity in Pituitary Thyroid Feedback Regulation". European Journal of Clinical Investigation 48 (10): e13003. doi:10.1111/eci.13003. PMID 30022470. 
  14. 14.0 14.1 Kim, Min Joo; Cho, Sun Wook; Choi, Sumin; Ju, Dal Lae; Park, Do Joon; Park, Young Joo (2018). "Changes in Body Compositions and Basal Metabolic Rates during Treatment of Graves' Disease". International Journal of Endocrinology 2018: 9863050. doi:10.1155/2018/9863050. PMID 29853888. 
  15. Steinberger, Eva; Pilz, Stefan; Trummer, Christian; Theiler-Schwetz, Verena; Reichhartinge, Markus; Benninger, Thomas; Pandis, Marlene; Malle, Oliver et al. (4 September 2020). "Associations of Thyroid Hormones and Resting Heart Rate in Patients Referred to Coronary Angiography". Hormone and Metabolic Research 52 (12): a–1232–7292. doi:10.1055/a-1232-7292. PMID 32886945. 
  16. Zhang, Lingyun; Li, Jie; Zhang, Suzhen; Su, Chen; Su, Zengcun; Zhang, Yuezhong; Gai, Yonghao; Shao, Shanshan et al. (30 July 2022). "Study of the Associations between Color Doppler Ultrasound Grading of Hyperthyroidism and Biochemical Data on Thyroid Function". International Journal of Endocrinology 2022: 1–6. doi:10.1155/2022/9743654. PMID 35942151. 
  17. Krysiak, R; Kowalcze, K; Okopień, B (20 May 2019). "The Effect of Selenomethionine on Thyroid Autoimmunity in Euthyroid Men With Hashimoto Thyroiditis and Testosterone Deficiency.". Journal of Clinical Pharmacology 59 (11): 1477–1484. doi:10.1002/jcph.1447. PMID 31106856. 
  18. "TSH and Thyrotropic Agonists: Key Actors in Thyroid Homeostasis". Journal of Thyroid Research 2012: 351864. 2012. doi:10.1155/2012/351864. PMID 23365787. 
  19. 19.0 19.1 Larisch, R; Midgley, JEM; Dietrich, JW; Hoermann, R (23 January 2024). "Effect of Radioiodine Treatment on Quality of Life in Patients with Subclinical Hyperthyroidism: A Prospective Controlled Study.". Nuklearmedizin. Nuclear Medicine. doi:10.1055/a-2240-8087. PMID 38262472. 
  20. Dietrich, Johannes W.; Schifferdecker, Ekkehard; Schatz, Helmut; Klein, Harald (2022). "Endokrine und Stoffwechseldiagnostik". Die Ärztliche Begutachtung. Springer Reference Medizin. pp. 1–13. doi:10.1007/978-3-662-61937-7_83-1. ISBN 978-3-662-61937-7. 
  21. "Influence of low protein diet on nonthyroidal illness syndrome in chronic renal failure". Endocrine 27 (3): 283–8. Aug 2005. doi:10.1385/endo:27:3:283. PMID 16230785. 
  22. Yang, S; Lai, S; Wang, Z; Liu, A; Wang, W; Guan, H (December 2021). "Thyroid Feedback Quantile-based Index correlates strongly to renal function in euthyroid individuals.". Annals of Medicine 53 (1): 1945–1955. doi:10.1080/07853890.2021.1993324. PMID 34726096. 
  23. "Nonthyroidal Illness Syndrome: is it Far Away From Crohn's Disease?". Journal of Clinical Gastroenterology 47 (2): 153–9. 2013. doi:10.1097/MCG.0b013e318254ea8a. PMID 22874844. 
  24. Wan, S; Yang, J; Gao, X; Zhang, L; Wang, X (22 July 2020). "Nonthyroidal Illness Syndrome in Patients With Short-Bowel Syndrome.". Journal of Parenteral and Enteral Nutrition 45 (5): 973–981. doi:10.1002/jpen.1967. PMID 32697347. 
  25. Dietrich, J. W.; Ackermann, A.; Kasippillai, A.; Kanthasamy, Y.; Tharmalingam, T.; Urban, A.; Vasileva, S.; Schildhauer, T. A. et al. (19 September 2019). "Adaptive Veränderungen des Schilddrüsenstoffwechsels als Risikoindikatoren bei Traumata". Trauma und Berufskrankheit 21 (4): 260–267. doi:10.1007/s10039-019-00438-z. 
  26. Ruiz-Núñez, Begoña; Tarasse, Rabab; Vogelaar, Emar F.; Janneke Dijck-Brouwer, D. A.; Muskiet, Frits A. J. (20 March 2018). "Higher Prevalence of "Low T3 Syndrome" in Patients With Chronic Fatigue Syndrome: A Case–Control Study". Frontiers in Endocrinology 9: 97. doi:10.3389/fendo.2018.00097. PMID 29615976. 
  27. Sun, Q; Oltra, E; Dijck-Brouwer, DAJ; Chillon, TS; Seemann, P; Asaad, S; Demircan, K; Espejo-Oltra, JA et al. (3 July 2023). "Autoantibodies to selenoprotein P in chronic fatigue syndrome suggest selenium transport impairment and acquired resistance to thyroid hormone.". Redox Biology 65: 102796. doi:10.1016/j.redox.2023.102796. PMID 37423160. 
  28. Bingyan, Zhan; Dong, Wei (7 July 2019). "Impact of thyroid hormones on asthma in older adults". Journal of International Medical Research 47 (9): 4114–4125. doi:10.1177/0300060519856465. PMID 31280621. 
  29. 29.0 29.1 Wu, Kejun; Zhou, Yu; Ke, Sujie; Huang, Jingze; Gao, Xuelin; Li, Beibei; Lin, Xiaoying; Liu, Xiaohong et al. (December 2021). "Lifestyle is associated with thyroid function in subclinical hypothyroidism: a cross-sectional study". BMC Endocrine Disorders 21 (1): 112. doi:10.1186/s12902-021-00772-z. PMID 34049544. 
  30. Zhou, Yu; Ke, Sujie; Wu, Kejun; Huang, Jingze; Gao, Xuelin; Li, Beibei; Lin, Xiaoying; Liu, Xiaohong et al. (2021-05-29). "Correlation between Thyroid Homeostasis and Obesity in Subclinical Hypothyroidism: Community-Based Cross-Sectional Research". International Journal of Endocrinology 2021: 1–7. doi:10.1155/2021/6663553. PMID 34135958. 
  31. Yang, L; Sun, X; Tao, H; Zhao, Y (February 2023). "The association between thyroid homeostasis parameters and obesity in subjects with euthyroidism.". Journal of Physiology and Pharmacology 74 (1). doi:10.26402/jpp.2023.1.07. PMID 37245234. 
  32. Ittermann, T; Markus, MRP; Bahls, M; Felix, SB; Steveling, A; Nauck, M; Völzke, H; Dörr, M (2021-05-18). "Low serum TSH levels are associated with low values of fat-free mass and body cell mass in the elderly.". Scientific Reports 11 (1): 10547. doi:10.1038/s41598-021-90178-7. PMID 34006958. Bibcode2021NatSR..1110547I. 
  33. Krysiak, R; Szkróbka, W; Okopień, B (June 2018). "Sex-Dependent Effect of Metformin on Serum Prolactin Levels In Hyperprolactinemic Patients With Type 2 Diabetes: A Pilot Study.". Experimental and Clinical Endocrinology & Diabetes 126 (6): 342–348. doi:10.1055/s-0043-122224. PMID 29169197. 
  34. Krysiak, R; Kowalcze, K; Okopień, B (5 December 2023). "Impact of metformin on hypothalamic-pituitary-thyroid axis activity in women with autoimmune and non-autoimmune subclinical hypothyroidism: a pilot study.". Pharmacological Reports. doi:10.1007/s43440-023-00556-3. PMID 38051473. 
  35. 35.0 35.1 Krysiak, R; Szkróbka, W; Okopień, B (6 August 2019). "The Impact of Testosterone on Metformin Action on Hypothalamic-Pituitary-Thyroid Axis Activity in Men: A Pilot Study.". Journal of Clinical Pharmacology 60 (2): 164–171. doi:10.1002/jcph.1507. PMID 31389032. 
  36. Krysiak, R; Kowalcze, K; Okopień, B (November 2021). "The impact of metformin on hypothalamic-pituitary-thyroid axis activity in postmenopausal women with untreated non-autoimmune subclinical hypothyroidism.". Clinical and Experimental Pharmacology & Physiology 48 (11): 1469–1476. doi:10.1111/1440-1681.13542. PMID 34145615. 
  37. Krysiak, Robert; Kowalcze, Karolina; Wolnowska, Monika; Okopień, Bogusław (5 January 2020). "The impact of oral hormonal contraception on metformin action on hypothalamic-pituitary-thyroid axis activity in women with diabetes and prediabetes: A pilot study". Journal of Clinical Pharmacy and Therapeutics 45 (5): 937–945. doi:10.1111/jcpt.13105. PMID 31903641. 
  38. Krysiak, R; Kowalcze, K; Okopień, B (9 January 2019). "Sexual function and depressive symptoms in young women with overt hyperthyroidism.". European Journal of Obstetrics, Gynecology, and Reproductive Biology 234: 43–48. doi:10.1016/j.ejogrb.2018.12.035. PMID 30654201. 
  39. Krysiak, Robert; Kowalcze, Karolina; Okopień, Bogusław (10 June 2019). "The effect of testosterone on thyroid autoimmunity in euthyroid men with Hashimoto's thyroiditis and low testosterone levels". Journal of Clinical Pharmacy and Therapeutics 44 (5): 742–749. doi:10.1111/jcpt.12987. PMID 31183891. 
  40. 40.0 40.1 Abu Rached, Nessr; Dietrich, Johannes W.; Ocker, Lennart; Quast, Daniel R.; Scheel, Christina; Gambichler, Thilo; Bechara, Falk G. (4 December 2023). "Primary Thyroid Dysfunction Is Prevalent in Hidradenitis Suppurativa and Marked by a Signature of Hypothyroid Graves' Disease: A Case–Control Study". Journal of Clinical Medicine 12 (23): 7490. doi:10.3390/jcm12237490. PMID 38068542. 
  41. Krysiak, R; Szkróbka, W; Okopień, B (30 July 2018). "The Effect of Gluten-Free Diet on Thyroid Autoimmunity in Drug-Naïve Women with Hashimoto's Thyroiditis: A Pilot Study". Experimental and Clinical Endocrinology & Diabetes 127 (7): 417–422. doi:10.1055/a-0653-7108. PMID 30060266. 
  42. Krysiak, R; Szkróbka, W; Okopień, B (27 August 2018). "The Relationship Between Statin Action On Thyroid Autoimmunity And Vitamin D Status: A Pilot Study.". Experimental and Clinical Endocrinology & Diabetes 127 (1): 23–28. doi:10.1055/a-0669-9309. PMID 30149415. 
  43. 43.0 43.1 Krysiak, Robert; Szkróbka, Witold; Okopień, Bogusław (October 2018). "The effect of vitamin D and selenomethionine on thyroid antibody titers, hypothalamic-pituitary-thyroid axis activity and thyroid function tests in men with Hashimoto's thyroiditis: a pilot study". Pharmacological Reports 71 (2): 243–7. doi:10.1016/j.pharep.2018.10.012. PMID 30818086. 
  44. 44.0 44.1 Krysiak, Robert; Kowalcze, Karolina; Okopień, Bogusław (December 2018). "Selenomethionine potentiates the impact of vitamin D on thyroid autoimmunity in euthyroid women with Hashimoto's thyroiditis and low vitamin D status". Pharmacological Reports 71 (2): 367–73. doi:10.1016/j.pharep.2018.12.006. PMID 30844687. 
  45. Krysiak, Robert; Kowalcze, Karolina; Okopień, Bogusław (April 2019). "The effect of vitamin D on thyroid autoimmunity in euthyroid men with autoimmune thyroiditis and testosterone deficiency". Pharmacological Reports 71 (5): 798–803. doi:10.1016/j.pharep.2019.04.010. PMID 31377561. 
  46. Krysiak, Robert; Kowalcze, Karolina; Szkróbka, Witold; Okopień, Bogusław (20 June 2023). "Sexual Function and Depressive Symptoms in Young Women with Euthyroid Hashimoto's Thyroiditis Receiving Vitamin D, Selenomethionine and Myo-Inositol: A Pilot Study". Nutrients 15 (12): 2815. doi:10.3390/nu15122815. PMID 37375719. 
  47. Krysiak, R; Kowalcze, K; Okopień, B (30 June 2022). "The impact of vitamin D on thyroid autoimmunity and hypothalamic-pituitary-thyroid axis activity in myo-inositol-treated and myo-inositol-naïve women with autoimmune thyroiditis: A pilot study.". Journal of Clinical Pharmacy and Therapeutics 47 (11): 1759–1767. doi:10.1111/jcpt.13730. PMID 35775148. 
  48. Saini, Chandanvir (6 April 2021). "Autoimmune thyroiditis and multiple nutritional factors". International Journal of Endocrinology (Ukraine) 16 (8): 648–653. doi:10.22141/2224-0721.16.8.2020.222885. 
  49. Krysiak, R; Szkróbka, W; Okopień, B (February 2021). "Dehydroepiandrosterone potentiates the effect of vitamin D on thyroid autoimmunity in euthyroid women with autoimmune thyroiditis: A pilot study.". Clinical and Experimental Pharmacology & Physiology 48 (2): 195–202. doi:10.1111/1440-1681.13410. PMID 33007106. 
  50. Krysiak, R; Kowalcze, K; Okopień, B (2021-06-09). "The impact of exogenous vitamin D on thyroid autoimmunity in euthyroid men with autoimmune thyroiditis and early-onset androgenic alopecia.". Pharmacological Reports 73 (5): 1439–1447. doi:10.1007/s43440-021-00295-3. PMID 34106452. 
  51. Krysiak, R; Kowalcze, K; Okopień, B (10 July 2020). "Hyperprolactinaemia attenuates the inhibitory effect of vitamin D/selenomethionine combination therapy on thyroid autoimmunity in euthyroid women with Hashimoto's thyroiditis: A pilot study.". Journal of Clinical Pharmacy and Therapeutics 45 (6): 1334–1341. doi:10.1111/jcpt.13214. PMID 32649802. 
  52. Krysiak, R; Kowalcze, K; Okopień, B (6 October 2022). "Gluten-free diet attenuates the impact of exogenous vitamin D on thyroid autoimmunity in young women with autoimmune thyroiditis: a pilot study.". Scandinavian Journal of Clinical and Laboratory Investigation 82 (7–8): 518–524. doi:10.1080/00365513.2022.2129434. PMID 36200764. 
  53. 53.0 53.1 Krysiak, R; Kowalcze, K; Okopień, B (14 September 2019). "The effect of spironolactone on thyroid autoimmunity in euthyroid men with Hashimoto's thyroiditis.". Journal of Clinical Pharmacy and Therapeutics 45 (1): 152–159. doi:10.1111/jcpt.13046. PMID 31520539. 
  54. Yang, Lijuan; Sun, Xiuqin; Zhao, Yi; Tao, Hong (7 March 2022). "Effects of Antihypertensive Drugs on Thyroid Function in Type 2 Diabetes Patients With Euthyroidism". Frontiers in Pharmacology 13: 802159. doi:10.3389/fphar.2022.802159. PMID 35330837. 
  55. Chen, Y; Zhang, W; Chen, C; Wang, Y; Wang, N; Lu, Y (31 March 2022). "Thyroid and bone turnover markers in type 2 diabetes: results from the METAL study.". Endocrine Connections 11 (3). doi:10.1530/EC-21-0484. PMID 35196256. 
  56. Li, W; He, Q; Zhang, H; Shu, S; Wang, L; Wu, Y; Yuan, Z; Zhou, J (20 January 2023). "Thyroid-stimulating hormone within the normal reference range has a U-shaped association with the severity of coronary artery disease in nondiabetic patients but is diluted in diabetic patients". Journal of Investigative Medicine 71 (4): 350–360. doi:10.1177/10815589221149187. PMID 36680358. 
  57. 57.0 57.1 Müller, Patrick; Dietrich, Johannes W.; Lin, Tina; Bejinariu, Alexandru; Binnebößel, Stephan; Bergen, Friederike; Schmidt, Jan; Müller, Sarah-Kristin et al. (January 2020). "Usefulness of Serum Free Thyroxine Concentration to Predict Ventricular Arrhythmia Risk in Euthyroid Patients with Structural Heart Disease". The American Journal of Cardiology 125 (8): 1162–1169. doi:10.1016/j.amjcard.2020.01.019. PMID 32087999. 
  58. Aweimer, A; El-Battrawy, I; Akin, I; Borggrefe, M; Mügge, A; Patsalis, PC; Urban, A; Kummer, M et al. (12 November 2020). "Abnormal thyroid function is common in takotsubo syndrome and depends on two distinct mechanisms: results of a multicentre observational study.". Journal of Internal Medicine 289 (5): 675–687. doi:10.1111/joim.13189. PMID 33179374. 
  59. Aweimer, A; Engemann, L; Amar, S; Ewers, A; Afshari, F; Maiß, C; Kern, K; Lücke, T et al. (24 October 2023). "Stress-Mediated Abnormalities in Regional Myocardial Wall Motion in Young Women with a History of Psychological Trauma.". Journal of Clinical Medicine 12 (21): 6702. doi:10.3390/jcm12216702. PMID 37959168. 
  60. Gürdal, A; Eroğlu, H; Helvaci, F; Sümerkan, MÇ; Kasali, K; Çetin, Ş; Aksan, G; Kiliçkesmez, K (March 2017). "Evaluation of Tp-e interval, Tp-e/QT ratio and Tp-e/QTc ratio in patients with subclinical hypothyroidism.". Therapeutic Advances in Endocrinology and Metabolism 8 (3): 25–32. doi:10.1177/2042018816684423. PMID 28377800. 
  61. Tan, Y; Gao, L; Yin, Q; Sun, Z; Man, X; Du, Y; Chen, Y (April 2021). "Thyroid hormone levels and structural parameters of thyroid homeostasis are correlated with motor subtype and disease severity in euthyroid patients with Parkinson's disease.". The International Journal of Neuroscience 131 (4): 346–356. doi:10.1080/00207454.2020.1744595. PMID 32186220. 
  62. Hoermann, Rudolf; Midgley, John E. M.; Larisch, Rolf; Dietrich, Johannes W. (7 November 2016). "Relational Stability in the Expression of Normality, Variation, and Control of Thyroid Function". Frontiers in Endocrinology 7: 142. doi:10.3389/fendo.2016.00142. PMID 27872610. 
  63. 63.0 63.1 Yang, S; Sun, J; Wang, S; E, L; Zhang, S; Jiang, X (9 August 2023). "Association of exposure to polycyclic aromatic hydrocarbons with thyroid hormones in adolescents and adults, and the influence of the iodine status.". Environmental Science: Processes & Impacts 25 (9): 1449–1463. doi:10.1039/d3em00135k. PMID 37555279. 
  64. Kim, Min Joo; Kim, Sunmi; Choi, Sohyeon; Lee, Inae; Moon, Min Kyong; Choi, Kyungho; Park, Young Joo; Cho, Yoon Hee et al. (December 2020). "Association of exposure to polycyclic aromatic hydrocarbons and heavy metals with thyroid hormones in general adult population and potential mechanisms". Science of the Total Environment 762: 144227. doi:10.1016/j.scitotenv.2020.144227. PMID 33373756. 
  65. Chen, Y; Zhang, W; Chen, J; Wang, N; Chen, C; Wang, Y; Wan, H; Chen, B et al. (2021). "Association of Phthalate Exposure with Thyroid Function and Thyroid Homeostasis Parameters in Type 2 Diabetes.". Journal of Diabetes Research 2021: 4027380. doi:10.1155/2021/4027380. PMID 34746318. 
  66. Maric, D; Baralic, K; Javorac, D; Mandic-Rajcevic, S; Zarkovic, M; Antonijevic, B; Djukic-Cosic, D; Bulat, Z et al. (2023). "Nickel as a potential disruptor of thyroid function: benchmark modelling of human data.". Frontiers in Endocrinology 14: 1145153. doi:10.3389/fendo.2023.1145153. PMID 37800147. 
  67. Huang, PC; Chen, HC; Leung, SH; Lin, YJ; Huang, HB; Chang, WT; Huang, HI; Chang, JW (1 December 2023). "Associations between paraben exposure, thyroid capacity, homeostasis and pituitary thyrotropic function in the general Taiwanese: Taiwan Environmental Survey for Toxicants (TEST) 2013". Environmental Science and Pollution Research 31 (1): 1288–1303. doi:10.1007/s11356-023-31277-y. PMID 38038926. 

External links