252 (number)

From HandWiki
Short description: Natural number
← 251 252 253 →
Cardinaltwo hundred fifty-two
Ordinal252nd
(two hundred fifty-second)
Factorization22 × 32 × 7
Divisors1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252
Greek numeralΣΝΒ´
Roman numeralCCLII
Binary111111002
Ternary1001003
Quaternary33304
Quinary20025
Senary11006
Octal3748
Duodecimal19012
HexadecimalFC16
VigesimalCC20
Base 367036

252 (two hundred [and] fifty-two) is the natural number following 251 and preceding 253.

In mathematics

252 is:

[math]\displaystyle{ 1^3+2^3+3^3+6^3=(1^3+2^3)(1^3+3^3)=252. }[/math]

There are 252 points on the surface of a cuboctahedron of radius five in the face-centered cubic lattice,[8] 252 ways of writing the number 4 as a sum of six squares of integers,[9] 252 ways of choosing four squares from a 4×4 chessboard up to reflections and rotations,[10] and 252 ways of placing three pieces on a Connect Four board.[11]

References

  1. Sloane, N. J. A., ed. "Sequence A000984 (Central binomial coefficients)". OEIS Foundation. https://oeis.org/A000984. 
  2. Sloane, N. J. A., ed. "Sequence A000594 (Ramanujan's tau function)". OEIS Foundation. https://oeis.org/A000594. 
  3. Sloane, N. J. A., ed. "Sequence A001158 (sigma_3(n): sum of cubes of divisors of n)". OEIS Foundation. https://oeis.org/A001158. 
  4. Sloane, N. J. A., ed. "Sequence A005153 (Practical numbers)". OEIS Foundation. https://oeis.org/A005153. 
  5. "Sloane's A033950 : Refactorable numbers". OEIS Foundation. 2016-04-18. https://oeis.org/A033950. 
  6. Sloane, N. J. A., ed. "Sequence A002412 (Hexagonal pyramidal numbers, or greengrocer's numbers)". OEIS Foundation. https://oeis.org/A002412. 
  7. "Sloane's A005282 : Mian-Chowla sequence". OEIS Foundation. 2016-04-19. https://oeis.org/A005282. 
  8. Sloane, N. J. A., ed. "Sequence A005901 (Number of points on surface of cuboctahedron)". OEIS Foundation. https://oeis.org/A005901. 
  9. Sloane, N. J. A., ed. "Sequence A000141 (Number of ways of writing n as a sum of 6 squares)". OEIS Foundation. https://oeis.org/A000141. 
  10. Sloane, N. J. A., ed. "Sequence A019318 (Number of inequivalent ways of choosing n squares from an n X n board, considering rotations and reflections to be the same)". OEIS Foundation. https://oeis.org/A019318. 
  11. Sloane, N. J. A., ed. "Sequence A090224 (Number of possible positions for n men on a standard 7 X 6 board of Connect-Four)". OEIS Foundation. https://oeis.org/A090224.