Aubin–Lions lemma

From HandWiki

In mathematics, the Aubin–Lions lemma (or theorem) is the result in the theory of Sobolev spaces of Banach space-valued functions, which provides a compactness criterion that is useful in the study of nonlinear evolutionary partial differential equations. Typically, to prove the existence of solutions one first constructs approximate solutions (for example, by a Galerkin method or by mollification of the equation), then uses the compactness lemma to show that there is a convergent subsequence of approximate solutions whose limit is a solution. The result is named after the France mathematicians Jean-Pierre Aubin and Jacques-Louis Lions. In the original proof by Aubin,[1] the spaces X0 and X1 in the statement of the lemma were assumed to be reflexive, but this assumption was removed by Simon,[2] so the result is also referred to as the Aubin–Lions–Simon lemma.[3]

Statement of the lemma

Let X0, X and X1 be three Banach spaces with X0 ⊆ X ⊆ X1. Suppose that X0 is compactly embedded in X and that X is continuously embedded in X1. For [math]\displaystyle{ 1\leq p, q\leq\infty }[/math], let

[math]\displaystyle{ W = \{ u \in L^p ([0, T]; X_0) \mid \dot{u} \in L^q ([0, T]; X_1) \}. }[/math]

(i) If [math]\displaystyle{ p\lt \infty }[/math] then the embedding of W into [math]\displaystyle{ L^p([0,T];X) }[/math] is compact.

(ii) If [math]\displaystyle{ p=\infty }[/math] and [math]\displaystyle{ q\gt 1 }[/math] then the embedding of W into [math]\displaystyle{ C([0,T];X) }[/math] is compact.

See also

Notes

  1. (Aubin 1963)
  2. (Simon 1986)
  3. (Boyer Fabrie)

References

  • Aubin, Jean-Pierre (1963). "Un théorème de compacité. (French)". C. R. Acad. Sci. Paris 256: pp. 5042–5044. 
  • Barrett, John W.; Süli, Endre (2012). "Reflections on Dubinskii's nonlinear compact embedding theorem". Publications de l'Institut Mathématique (Belgrade). Nouvelle Série 91 (105): 95–110. doi:10.2298/PIM1205095B. 
  • Boyer, Franck; Fabrie, Pierre (2013). Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences 183. New York: Springer. pp. 102–106. ISBN 978-1-4614-5975-0.  (Theorem II.5.16)
  • Lions, J.L. (1969). Quelque methodes de résolution des problemes aux limites non linéaires. Paris: Dunod-Gauth. Vill.. 
  • Roubíček, T. (2013). Nonlinear Partial Differential Equations with Applications (2nd ed.). Basel: Birkhäuser. ISBN 978-3-0348-0512-4.  (Sect.7.3)
  • Showalter, Ralph E. (1997). Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs 49. Providence, RI: American Mathematical Society. pp. 106. ISBN 0-8218-0500-2.  (Proposition III.1.3)
  • Simon, J. (1986). "Compact sets in the space Lp(O,T;B)". Annali di Matematica Pura ed Applicata 146: 65–96. doi:10.1007/BF01762360. 
  • Chen, X.; Jüngel, A.; Liu, J.-G. (2014). "A note on Aubin-Lions-Dubinskii lemmas". Acta Appl. Math. 133: pp. 33–43.