Band (order theory)

From HandWiki

In mathematics, specifically in order theory and functional analysis, a band in a vector lattice [math]\displaystyle{ X }[/math] is a subspace [math]\displaystyle{ M }[/math] of [math]\displaystyle{ X }[/math] that is solid and such that for all [math]\displaystyle{ S \subseteq M }[/math] such that [math]\displaystyle{ x = \sup S }[/math] exists in [math]\displaystyle{ X, }[/math] we have [math]\displaystyle{ x \in M. }[/math][1] The smallest band containing a subset [math]\displaystyle{ S }[/math] of [math]\displaystyle{ X }[/math] is called the band generated by [math]\displaystyle{ S }[/math] in [math]\displaystyle{ X. }[/math][1] A band generated by a singleton set is called a principal band.

Examples

For any subset [math]\displaystyle{ S }[/math] of a vector lattice [math]\displaystyle{ X, }[/math] the set [math]\displaystyle{ S^{\perp} }[/math] of all elements of [math]\displaystyle{ X }[/math] disjoint from [math]\displaystyle{ S }[/math] is a band in [math]\displaystyle{ X. }[/math][1]

If [math]\displaystyle{ \mathcal{L}^p(\mu) }[/math] ([math]\displaystyle{ 1 \leq p \leq \infty }[/math]) is the usual space of real valued functions used to define Lp spaces [math]\displaystyle{ L^p, }[/math] then [math]\displaystyle{ \mathcal{L}^p(\mu) }[/math] is countably order complete (that is, each subset that is bounded above has a supremum) but in general is not order complete. If [math]\displaystyle{ N }[/math] is the vector subspace of all [math]\displaystyle{ \mu }[/math]-null functions then [math]\displaystyle{ N }[/math] is a solid subset of [math]\displaystyle{ \mathcal{L}^p(\mu) }[/math] that is not a band.[1]

Properties

The intersection of an arbitrary family of bands in a vector lattice [math]\displaystyle{ X }[/math] is a band in [math]\displaystyle{ X. }[/math][2]

See also

References

  1. 1.0 1.1 1.2 1.3 Narici & Beckenstein 2011, pp. 204–214.
  2. Schaefer & Wolff 1999, pp. 204–214.