Besov space

From HandWiki
Short description: Generalization of Sobolev spaces

In mathematics, the Besov space (named after Oleg Vladimirovich Besov) Bp,qs(𝐑) is a complete quasinormed space which is a Banach space when 1 ≤ p, q ≤ āˆž. These spaces, as well as the similarly defined Triebel–Lizorkin spaces, serve to generalize more elementary function spaces such as Sobolev spaces and are effective at measuring regularity properties of functions.

Definition

Several equivalent definitions exist. One of them is given below. This definition is quite limited because it does not extend to the range s ≤ 0.

Let

Δhf(x)=f(xh)f(x)

and define the modulus of continuity by

ωp2(f,t)=sup|h|tΔh2fp

Let n be a non-negative integer and define: s = n + α with 0 < α ≤ 1. The Besov space Bp,qs(𝐑) contains all functions f such that

fWn,p(𝐑),0|ωp2(f(n),t)tα|qdtt<.

Norm

The Besov space Bp,qs(𝐑) is equipped with the norm

fBp,qs(𝐑)=(fWn,p(𝐑)q+0|ωp2(f(n),t)tα|qdtt)1q

The Besov spaces B2,2s(𝐑) coincide with the more classical Sobolev spaces Hs(𝐑).

If p=q and s is not an integer, then Bp,ps(𝐑)=WĀÆs,p(𝐑), where WĀÆs,p(𝐑) denotes the Sobolev–Slobodeckij space.

References

  • Triebel, Hans (1992). Theory of Function Spaces II. doi:10.1007/978-3-0346-0419-2. ISBN 978-3-0346-0418-5. 
  • Besov, O. V. (1959). "On some families of functional spaces. Imbedding and extension theorems." (in ru). Dokl. Akad. Nauk SSSR 126: 1163–1165. 
  • DeVore, R. and Lorentz, G. "Constructive Approximation", 1993.
  • DeVore, R., Kyriazis, G. and Wang, P. "Multiscale characterizations of Besov spaces on bounded domains", Journal of Approximation Theory 93, 273-292 (1998).
  • Leoni, Giovanni (2017). A First Course in Sobolev Spaces: Second Edition. Graduate Studies in Mathematics. 181. American Mathematical Society. pp. 734. ISBN 978-1-4704-2921-8