Biology:ALOX15
Generic protein structure example |
ALOX15 (also termed arachidonate 15-lipoxygenase, 15-lipoxygenase-1, 15-LO-1, 15-LOX-1) is, like other lipoxygenases, a seminal enzyme in the metabolism of polyunsaturated fatty acids to a wide range of physiologically and pathologically important products.
▼ Gene Function
Kelavkar and Badr (1999) stated that the ALOX15 gene product is implicated in antiinflammation, membrane remodeling, and cancer development/metastasis. Kelavkar and Badr (1999) described experiments yielding data that supported the hypothesis that loss of the TP53 gene, or gain-of-function activities resulting from the expression of its mutant forms, regulates ALOX15 promoter activity in human and in mouse, albeit in directionally opposite manners. These studies defined a direct link between ALOX15 gene activity and an established tumor-suppressor gene located in close chromosomal proximity. Kelavkar and Badr (1999) referred to this as evidence that 15-lipoxygenase is a mutator gene. ▼ Mapping
By PCR analysis of a human-hamster somatic hybrid DNA panel, Funk et al. (1992) demonstrated that genes for 12-lipoxygenase and 15-lipoxygenase are located on human chromosome 17, whereas the most unrelated lipoxygenase (5-lipoxygenase) was mapped to chromosome 10.
Kelavkar and Badr (1999) stated that the ALOX15 gene maps to 17p13.3 in close proximity to the tumor-suppressor gene TP53 (191170). In humans, it is encoded by the ALOX15 gene located on chromosome 17p13.3.[1] This 11 kilobase pair gene consists of 14 exons and 13 introns coding for a 75 kilodalton protein composed of 662 amino acids. 15-LO is to be distinguished from another human 15-lipoxygenase enzyme, ALOX15B (also termed 15-lipoxygenase-2).[2] Orthologs of ALOX15, termed Alox15, are widely distributed in animal and plant species but commonly have different enzyme activities and make somewhat different products than ALOX15.
Nomenclature
Human ALOX15 was initially named arachidonate 15-lipoxygenase or 15-lipoxygenase but subsequent studies uncovered a second human enzyme with 15-lipoxygenase activity as well as various non-human mammalian Alox15 enzymes that are closely related to and therefore orthologs of human ALOX15. Many of the latter Alox15 enzymes nonetheless possess predominantly or exclusively 12-lipoxygenase rather than 15-lipoxygenase activity. Consequently, human ALOX15 is now referred to as arachidonate-15-lipoxygenase-1, 15-lipoxygenase-1, 15-LOX-1, 15-LO-1, human 12/15-lipoxygenase, leukocyte-type arachidonate 12-lipoxygenase, or arachidonate omega-6 lipoxygenase. The second discovered human 15-lipoxygenase, a product of the ALOX15B gene, is termed ALOX15B, arachidonate 15-lipoxygenase 2, 15-lipoxygenase-2, 15-LOX-2, 15-LO-2, arachidonate 15-lipoxygenase type II, arachidonate 15-lipoxygenase, second type, and arachidonate 15-lipoxygenase; and mouse, rat, and rabbit rodent orthologs of human ALOX15, which share 74-81% amino acid identity with the human enzyme, are commonly termed Alox15, 12/15-lipoxygenase, 12/15-LOX, or 12/15-LO).[1][2]
Both human ALOX15 and ALOX15B genes are located on chromosome 17; their product proteins have an amino acid sequence identity of only ~38%; they also differ in the polyunsaturated fatty acids that they prefer as substrates and exhibit different product profiles when acting on the same substrates.[2][3]
Tissue distribution
Human ALOX15 protein is highly expressed in circulating blood eosinophils and reticulocytes, cells, bronchial airway epithelial cells, mammary epithelial cells, the Reed-Sternberg cells of Hodgkin's lymphoma, corneal epithelial cells, and dendritic cells; it is less strongly expressed in alveolar macrophages, tissue mast cells, tissue fibroblasts, circulating blood neutrophils, vascular endothelial cells, joint Synovial membrane cells, seminal fluid, prostate epithelium cells, and mammary ductal epithelial cells.[4][5][6][7]
The distribution of Alox15 in sub-human primates and, in particular, rodents differs significantly from that of human ALOX15; this, along with their different principal product formation (e.g. 12-HETE rather than 15-HETE) has made the findings of Alox15 functions in rat, mouse, or rabbit models difficult to extrapolate to the function of ALOX15 in humans.[2]
Enzyme activities
Lipoxygenase activity
ALOX15 and Alox15 enzymes are non-heme, iron-containing dioxygenases. They commonly catalyze the attachment of molecular oxygen O2 as a peroxy residue to polyunsaturated fatty acids (PUFA) that contain two carbon-carbon double bonds that for the human ALOX15 are located between carbons 10 and 9 and 7 and 6 as numbered counting backward from the last or omega (i.e. ω) carbon at the methyl end of the PUFA (these carbons are also termed ω-10 and ω-9 and ω-7 and ω-6). In PUFAs that do not have a third carbon-carbon double bound between their ω-13 and ω-12 carbons, human ALOX15 forms ω-6 peroxy intermediates; in PUFAs that do have this third double bound, human ALOX15 makes the ω-6 peroxy intermediate but also small amounts of the ω-9 peroxy intermediate. Rodent Alox15 enzymes, in contrast, produce almost exclusively ω-9 peroxy intermediates. Concurrently, ALOX15 and rodent Alox15 enzymes rearrange the carbon-carbon double bonds to bring them into the 1S-hydroxy-2E,4Z-diene configuration. ALOX15 and Alox15 enzymes act with a high degree of Stereospecificity to form products that position the hydroperoxy residue in the S stereoisomer configuration.[8]
Lipohydroperoxidase activity
Human ALOX15 can also convert the peroxy PUFA intermediate to a cyclic ether with a three-atom ring, i.e. an epoxide intermediate that is attacked by a water molecule to form epoxy-hydrpoxy PUFA products.[2] Eoxins stimulate vascular permeability in an ex vivo human vascular endothelial model system.[9]
Leukotriene synthase activity
The PUFA epoxide of arachidonic acid made by ALOX15 - eoxin A4 may also be conjugated with glutathione to form eoxin B4 which product can be further metabolized to eoxin C4, and eoxin D4.[2]
Substrates, substrate metabolites, and metabolite activities
Among their physiological substrates, human and rodent ALOX15 enzymes act on linoleic acid, alpha-linolenic acid, gamma-linolenic acid, arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid when presented not only as free acids but also when incorporated as esters in phospholipids, glycerides, or Cholesteryl esters. The human enzyme is particularly active on linoleic acid, preferring it over arachidonic acid. It is less active on PUFA that are esters within the cited lipids.[2]
Arachidonic acid
Arachidonic acid (AA) has double bonds between carbons 5-6, 8-9, 11-12, and 14-15; these double bonds are in the cis (see Cis–trans isomerism or Z as opposed to the trans or E configuration). ALOX15 adds a hydroperoxy residue to AA at carbons 15 and to a lesser extent 12 to form 15(S)-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid (15(S)-HpETE) and 12(S)-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HpETE); the purified enzyme makes 15(S)-HpETE and 12(S)-HpETE in a product ratio of ~4-9 to 1.[10] Both products may be rapidly reduced by ubiquitous cellular glutathione peroxidase enzymes to their corresponding hydroxy analogs, 15(S)-HETE (see 15-Hydroxyeicosatetraenoic acid) and 12(S)-HETE (see 12-Hydroxyeicosatetraenoic acid). 15(S)-HpETE and 15(S)-HETE bind to and activate the leukotriene B4 receptor 2, activate the peroxisome proliferator-activated receptor gamma, and at high concentrations cause cells to generate toxic reactive oxygen species; one or more of these effects may be at least in part responsible for their ability to promote inflammatory responses, alter the growth of various times of human cancer cell lines, contract various types of blood vessels, and stimulate pathological fibrosis in pulmonary arteries and liver (see 15-Hydroxyeicosatetraenoic acid § 15(S)-HpETE and 15(S)-HETE). 15(S)-HpETE and 15(S)-HETE are esterified into membrane phospholipids where they may be stored and subsequently released during cell stimulation. As one aspect of this processing, the two products are progressively esterified in mitochondria membrane phospholipids during the maturation of red blood cells (see Erythropoiesis) and thereby may serve to signal for the degradation of the mitochondria and the maturation of these precursors to red blood cells in mice. This pathway operates along with two other mitochondria-removing pathways and therefore does not appear essential for mouse red blood cell maturation.[2]
15-(S)-HpETE and 15(S)-HETE may be further metabolized to various bioactive products including:
- Lipoxin (LX)A4, LXB4, AT-LXA4, and AT-LXB4; these metabolites are members of the specialized proresolving mediator class of anti-inflammatory agents that contribute to the resolution of inflammatory responses and inflammation-based diseases in animal models and, potentially, humans (see Specialized proresolving mediators).
- Hepoxilin isomers (e.g. 1S-hydroxy-14S,15S-epoxy-5Z,8Z,12E-eicosatrienoic acid (14,15-HXA3) and 13R-hydroxy-14S,15S-epoxy-5Z,8Z,11Z-eicosatrienoic acid (14,15-HXB3)) which may contribute to the regulation of inflammation responses and insulin secretion).
- Eoxins (e.g. eoxin C4, 14,15-eoxin D4, and eoxin E4) which have pro-inflammatory actions and contribute to severe asthma, aspirin-exacerbated respiratory disease attacks, and other allergy reactions; they may also be involved in the pathology of Hodgkins disease.
- 8(S),15(S)-dihydroxy-5Z,9E,11Z,13E-eicosatetraenoic acid (8(S),15(S)-diHETE), an inhibitor of human platelet aggregation (see Dihydroxy-E,Z,E-PUFA).
- 5(S),15(S)-dihydroxy-6Z,8E,11E,13Z-eicosatetraenoic acid (5(S),15(S)-diHETE) and its 5-ketone analog, 5-oxo-15(S)-hydroxy-ETE. These are weak and potent, respectively, stimulators of human eosinophil, neutrophil, and monocyte chemotaxis and thereby possible contributors to human allergic and non-allergic inflammation responses (see 5-Hydroxyeicosatetraenoic acid §§ Inflammation and Allergy).
- 15-Oxo-ETE which inhibits the growth of cultured human umbilical vein endothelial cells and various human cancer cell lines; it is also has activities on THP1 cell line cells suggesting that it might act as an inhibitor of inflammatory and oxidative stress reactions (see 15-Hydroxyeicosatetraenoic acid § 15-Oxo-ETE).
The minor products of ALOX15, 12-(S)-HpETE and 12(S)-HETE, possess a broad range of activities. One or both of these compounds stimulates cells by binding with and activating two G protein-coupled receptors, GPR31 and the leukotriene B4 receptor 2; 12S-HETE also acts as a receptor antagonist by binding to but not stimulating the thromboxane receptor thereby inhibiting the actions of thromboxane A2 and prostaglandin H2 (see 12-Hydroxyeicosatetraenoic acid § Receptor targets and mechanisms of action). As at least a partial consequence of these receptor-directed actions, one or both the two ALOX15 products exhibit pro-inflammation, diabetes-inducing, and vasodilation activities in animal models; cancer-promoting activity on cultured human cancer cells; and other actions (see 12-Hydroxyeicosatetraenoic acid § Activities and possible clinical significance). The two products are also further metabolized to various bioactive products including:
- Hepoxilin A3 and Hepoxilin B3 along with their respective tri-hydroxyl metabolites, trioxilin A3 and trioxilin B3. These metabolites have been reported to have anti-inflammatory activity, to have vasodilation activity, to promote pain perception, to reverse oxidative stress in cells, and to promote insulin secretion in animal model systems (see Hepoxilin).
- 12-Oxo-ETE, which along with 12S-HETE, activates the leukotriene B4 receptor, leukotriene B4 receptor 2 (BLT2) but not its leukotriene B4 receptor 1 (BLT1). This allows the possibility that 12-oxo-ETE contributes to the pro-inflammatory and other activities that BLT2 regulates (see 12-Hydroxyeicosatetraenoic acid § Inflammation and inflammatory diseases and Leukotriene B4 receptor 2[11]).
Docosahexaenoic acid
Human ALOX15 metabolizes docosahexaenoic acid (DHA) to 17S-Hydroperoxy-4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic acid (17S-HpDHA) and 17S-hydroxy-4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic acid (17S-HDHA).[12] One or both of these products stimulate human breast and prostate cell lines to proliferate in culture and 17S-HDHA possesses potent specialized proresolving mediator activity (see Specialized proresolving mediators § DHA-derived resolvins).[13][14][15][16] One or both of these products may be further metabolized enzymatically to:
- Resolvin Ds (RvDs), i.e. RvD-1, RvD2, RvD3, RvD4, RvD5, RvD6, and protectin Ds (PDs), i.e. PD1, PDX, 20-hydroxy-PD1, 17-epi-PD1, and 10-epi-PD1 (see Neuroprotectin D1 and Specialized proresolving mediators § DHA-derived protectins/neuroprotectins). These products are members of, and have a wide range of activities common to, the specialized proresolving mediators class of metabolites.
Eicosapentaenoic acid
Human ALOX15 metabolizes eicosapentaenoic acid to 15S-hydroperoxy-5Z,8Z,11Z,13E,17E-eicosapentaenoic acid (15S-HpEPA) and 15S-hydroxy-5Z,8Z,11Z,13E,17E-eicosapentaenoic acid (15S-HEPA); 15S-HEPA inhibits ALOX5-dependent production of the pro-inflammatory mediator, LTB4, in cells, and may thereby serve an anti-inflammatory function.[17] These products may be further metabolized to:
- Resolvin E3, a specialized proresolvin mediator with anti-inflammatory activity (see Specialized proresolving mediators § EPA-derived resolvins i.e. RvE).
n-3 Docosapentaenoic acid
Human cells and mouse tissues metabolize n-3 docosapentaenoic acid (i.e., 7Z,10Z,13Z,16Z,19Z-docosapentaenoic acid, or clupanodonic acid) to a series of products that have been classified as specialized proresolvin mediators. Base on the analogy to docosahexaenoic acid metabolism to resolving D's, it is presumed that a 15-lipoxygenase, most likely ALOX15 in humans, contributes to this metabolism. These products, termed n-3 Resolven D's (RvDn-3's), are:
- RvD1n-3, RvD2n-3, and RvD3n-3; each of these products possesses potent anti-inflammatory activity (see Specialized proresolving mediators § n-3 DPA-derived resolvins).
Linoleic acid
Human 15-LOX-1 prefers linoleic acid over arachidonic acid as its primary substrate, oxygenating it at carbon 13 to form 13(S)-hydroperoxy-9Z,11E-octadecenoic acid (13-HpODE or 13(S)-HpODE) which may then be reduce to the corresponding hydroxy derivative, 13(S)-HODE or 13-HODE (see 13-Hydroxyoctadecadienoic acid). In addition to 13(S)-HpODE, non-human 15-LOX1 orthologs such as mouse 12/15-LOX and soybean 15-LOX metabolize linoleic acid to 9-hydroperoxy-10E, 12Z-octadecenoic acid (9-HpODE or 9(S)-HpODE), which is rapidly converted to 9(S)-HODE (9-HODE) (see 9-Hydroxyoctadecadienoic acid).[18][19] 13(S)-HODE acts through peroxisome proliferator-activated receptors and the TRPV1 and human GPR132 receptors to stimulate a variety of responses related to monocyte maturation, lipid metabolism, and neuron activation (see 13-Hydroxyoctadecadienoic acid § Activities); 9(S)-HODE is a marker for diseases involving oxidative stress and may contribute to this disease as well as to pain perception and atherosclerosis (see 9-Hydroxyoctadecadienoic acid § Biological and clinical relevancy of 9-HODEs). The two HODEs can be further metabolized to their ketones, 13-oxo-9Z,11E-octadecenoic acid and 9-oxo-10E, 12Z-octadecenoic acid; these ketones have been implicated as biomarkers for and possible contributors to the inflammatory component of atherosclerosis, Alzheimer's disease, steatohepatitis, and other pathological conditions.[20]
Dihomo-γ-linolenic acid
Human neutrophils, presumably using their ALOX 15, metabolize dihomo-γ-linolenic acid (8Z,11Z,14Z-eicosatrienoic acid) to 15S-hydroperoxy-8Z,11Z,13E-eicosatrienoic acid and 15S-hydroxy-8Z,11Z,13E-eicosatrienoic acid (15S-HETrE). 15S-HETrE possesses anti-inflammatory activity.[17][21]
Gene manipulation studies
Mice made deficient in their 12/15-lipoxygenase gene (Alox15) exhibit a prolonged inflammatory response along with various other aspects of a pathologically enhanced inflammatory response in experimental models of cornea injury, airway inflammation, and peritonitis. These mice also show an accelerated rate of progression of atherosclerosis whereas mice made to overexpress 12/15-lipoxygenase exhibit a delayed rate of atherosclerosis development. Alox15 overexpressing rabbits exhibited reduced tissue destruction and bone loss in a model of periodontitis. Finally, Control mice, but not 12/15-lipoxygense deficient mice responded to eicospentaenoic acid administration by decreasing the number of lesions in a model of endometriosis.[22] These studies indicate that the suppression of inflammation is a major function of 12/15-lipoxygenase and the Specialized proresolving mediators it produces in rodents; although rodent 12/15-lipoxygenase differs from human ALOX15 in the profile of the PUFA metabolites that it produces as well as various other parameters (e.g. tissue distribution), these genetic studies allow that human ALOX15 and the specialized proresolving mediators it produces may play a similar major anti-inflammatory function in humans.
Clinical significance
Inflammatory diseases
À huge and growing number of studies in animal models suggest that 15-LOX-1 and its lipoxin, resolvin, and protectin metabolites (see Specialized proresolving mediators) to inhibit, limit, and resolve diverse inflammatory diseases including periodontitis, peritonitis, sepsis, and other pathogen-induced inflammatory responses; in eczema, arthritis, asthma, cystic fibrosis, atherosclerosis, and adipose tissue inflammation; in the insulin resistance that occurs in obesity that is associated with diabetes and the metabolic syndrome; and in Alzheimer's disease.[23][24][25][26][27] While these studies have not yet been shown to translate to human diseases, first and second generation synthetic resolvins and lipoxins, which unlike their natural analogs, are relatively resistant to metabolic inactivation, have been made and tested as inflammation inhibitors in animal models.[28] These synthetic analogs may prove to be clinically useful for treating the cited human inflammatory diseases.
By metabolizing the ω-3 polyunsaturated fatty acids, eicosapentaenoic acid and docosahexaenoic acid, into 17-HpDHA, 17-HDHA, and the resolvins and protectins, 15-LOX-1's metabolic action is thought to be one mechanism by which dietary ω-3 polyunsaturated fatty acids, particularly fish oil, act to ameliorate inflammation, inflammation-related diseases, and certain cancers.[7][23]
Asthma
15-LOX-1 and its 5-oxo-15-hydroxy-ETE and eoxin metabolites have been suggested as potential contributors to, and therefore targets for the future study and treatment of, human allergen-induced asthma, aspirin-induced asthma, and perhaps other allergic diseases.[29][30]
Cancer
In colorectal, breast, and kidney cancers, 15-LOX-1 levels are low or absent compared to the cancers' normal tissue counterparts and/or these levels sharply decline as the cancers progress.[6][23][31] These results, as well as a 15-LOX-1 transgene study on colon cancer in mice[32] suggests but do not prove[33] that 15-LOX-1 is a tumor suppressor.
By metabolizing ω-3 polyunsaturated fatty acids, eicosapentaenoic acid and docosahexaenoic acid, into lipoxins and resolvins, 15-LOX-1 is thought to be one mechanism by which dietary ω-3 polyunsaturated fatty acids, particularly fish oil, may act to reduce the incidence and/or progression of certain cancers.[23] Indeed, the ability of docosahexaenoic acid to inhibit the growth of cultured human prostate cancer cells is totally dependent upon the expression of 15-LOX-1 by these cells and appears due to this enzyme's production of docosahexaenoic acid metabolites such as 17(S)-HpETE, 17(S)-HETE, and/or and, possibly, an isomer of protectin DX (10S,17S-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexaenoic acid)[7][12]
Kelavkar et.al have shown that aberrant overexpression of 15-LO-1 occurs in human PCa, particularly high-grade PCa, and in high-grade prostatic intraepithelial neoplasia (HGPIN), and that the murine orthologue is increased in SV40-based genetically engineered mouse (GEM) models of PCa, such as LADY and TRansgenic Adenocarcinoma of Mouse Prostate. Targeted overexpression of h15-LO-1 (a gene overexpressed in human PCa and HGPIN) to mouse prostate is sufficient to promote epithelial proliferation and mPIN development. These results support 15-LO-1 as having a role in prostate tumor initiation and as an early target for dietary or other prevention strategies. The FLiMP mouse model should also be useful in crosses with other GEM models to further define the combinations of molecular alterations necessary for PCa progression.[34]
Notes
See also
- 15-Hydroxyicosatetraenoic acid
- 12-Hydroxyeicosatetraenoic acid
References
- ↑ 1.0 1.1 "Characterization of human 12-lipoxygenase genes". Proceedings of the National Academy of Sciences of the United States of America 89 (9): 3962–6. May 1992. doi:10.1073/pnas.89.9.3962. PMID 1570320. Bibcode: 1992PNAS...89.3962F.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 "Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15)". Gene 573 (1): 1–32. November 2015. doi:10.1016/j.gene.2015.07.073. PMID 26216303.
- ↑ "Discovery of a second 15S-lipoxygenase in humans". Proceedings of the National Academy of Sciences of the United States of America 94 (12): 6148–52. June 1997. doi:10.1073/pnas.94.12.6148. PMID 9177185. Bibcode: 1997PNAS...94.6148B.
- ↑ "On the biosynthesis and biological role of eoxins and 15-lipoxygenase-1 in airway inflammation and Hodgkin lymphoma". Prostaglandins & Other Lipid Mediators 89 (3–4): 120–5. September 2009. doi:10.1016/j.prostaglandins.2008.12.003. PMID 19130894.
- ↑ "Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer". Prostaglandins, Leukotrienes, and Essential Fatty Acids 74 (4): 235–45. April 2006. doi:10.1016/j.plefa.2006.01.009. PMID 16556493.
- ↑ 6.0 6.1 "The critical role of 15-lipoxygenase-1 in colorectal epithelial cell terminal differentiation and tumorigenesis". Cancer Research 65 (24): 11486–92. December 2005. doi:10.1158/0008-5472.can-05-2180. PMID 16357157.
- ↑ 7.0 7.1 7.2 "15-Lipoxygenase-1-mediated metabolism of docosahexaenoic acid is required for syndecan-1 signaling and apoptosis in prostate cancer cells". Carcinogenesis 34 (1): 176–82. January 2013. doi:10.1093/carcin/bgs324. PMID 23066085.
- ↑ "Mammalian lipoxygenases and their biological relevance". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1851 (4): 308–30. April 2015. doi:10.1016/j.bbalip.2014.10.002. PMID 25316652.
- ↑ "Eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells". Proceedings of the National Academy of Sciences of the United States of America 105 (2): 680–5. 2008. doi:10.1073/pnas.0710127105. PMID 18184802. Bibcode: 2008PNAS..105..680F.
- ↑ "Positional specificity of a reticulocyte lipoxygenase. Conversion of arachidonic acid to 15-S-hydroperoxy-eicosatetraenoic acid". The Journal of Biological Chemistry 257 (11): 6050–5. June 1982. doi:10.1016/S0021-9258(20)65103-1. PMID 6804460.
- ↑ "Hydroxyeicosanoids bind to and activate the low affinity leukotriene B4 receptor, BLT2". The Journal of Biological Chemistry 276 (15): 12454–9. April 2001. doi:10.1074/jbc.M011361200. PMID 11278893.
- ↑ 12.0 12.1 "15-lipoxygenase metabolites of docosahexaenoic acid inhibit prostate cancer cell proliferation and survival". PLOS ONE 7 (9): e45480. 2012. doi:10.1371/journal.pone.0045480. PMID 23029040. Bibcode: 2012PLoSO...745480O.
- ↑ "15-Lipoxygenase-1-mediated metabolism of docosahexaenoic acid is required for syndecan-1 signaling and apoptosis in prostate cancer cells". Carcinogenesis 34 (1): 176–82. 2013. doi:10.1093/carcin/bgs324. PMID 23066085.
- ↑ "Fatty acid metabolites in rapidly proliferating breast cancer". PLOS ONE 8 (5): e63076. 2013. doi:10.1371/journal.pone.0063076. PMID 23658799. Bibcode: 2013PLoSO...863076O.
- ↑ "The specialized proresolving mediator 17-HDHA enhances the antibody-mediated immune response against influenza virus: a new class of adjuvant?". Journal of Immunology 193 (12): 6031–40. 2014. doi:10.4049/jimmunol.1302795. PMID 25392529.
- ↑ "Specialized proresolving mediators (SPMs) inhibit human B-cell IgE production". European Journal of Immunology 46 (1): 81–91. 2016. doi:10.1002/eji.201545673. PMID 26474728.
- ↑ 17.0 17.1 "Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of antiinflammatory and antiproliferative metabolites". The American Journal of Clinical Nutrition 71 (1 Suppl): 361S–6S. 2000. doi:10.1093/ajcn/71.1.361s. PMID 10617998.
- ↑ "Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages". Journal of Lipid Research 32 (3): 449–56. March 1991. doi:10.1016/S0022-2275(20)42068-1. PMID 1906087.
- ↑ "Proof of the enzymatic formation of 9-hydroperoxy-10-trans, 12-cis-octadecadienoic acid from linoleic acid by soya lipoxygenase". Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 202 (1): 198–9. February 1970. doi:10.1016/0005-2760(70)90235-3. PMID 5461374.
- ↑ "Identification and profiling of targeted oxidized linoleic acid metabolites in rat plasma by quadrupole time-of-flight mass spectrometry". Biomedical Chromatography 27 (4): 422–32. 2013. doi:10.1002/bmc.2809. PMID 23037960.
- ↑ "Metabolism of gammalinolenic acid in human neutrophils". Journal of Immunology 156 (8): 2941–7. 1996. doi:10.4049/jimmunol.156.8.2941. PMID 8609415.
- ↑ "The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution". Seminars in Immunology 27 (3): 200–15. 2015. doi:10.1016/j.smim.2015.03.004. PMID 25857211.
- ↑ 23.0 23.1 23.2 23.3 "Pro-resolving mediators produced from EPA and DHA: Overview of the pathways involved and their mechanisms in metabolic syndrome and related liver diseases". European Journal of Pharmacology 785: 133–143. May 2015. doi:10.1016/j.ejphar.2015.03.092. PMID 25987424.
- ↑ "Lipoxins and aspirin-triggered lipoxins in resolution of inflammation". European Journal of Pharmacology 760: 49–63. August 2015. doi:10.1016/j.ejphar.2015.03.083. PMID 25895638.
- ↑ "12- and 15-lipoxygenases in adipose tissue inflammation". Prostaglandins & Other Lipid Mediators 104–105: 84–92. Jul 2013. doi:10.1016/j.prostaglandins.2012.07.004. PMID 22951339.
- ↑ "The role of pro-resolution lipid mediators in infectious disease". Immunology 141 (2): 166–73. February 2014. doi:10.1111/imm.12206. PMID 24400794.
- ↑ "The resolution code of acute inflammation: Novel pro-resolving lipid mediators in resolution". Seminars in Immunology 27 (3): 200–15. May 2015. doi:10.1016/j.smim.2015.03.004. PMID 25857211.
- ↑ "Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent". American Journal of Physiology. Lung Cellular and Molecular Physiology 308 (9): L904–11. May 2015. doi:10.1152/ajplung.00370.2014. PMID 25770181.
- ↑ "The influence of aspirin on release of eoxin C4, leukotriene C4 and 15-HETE, in eosinophilic granulocytes isolated from patients with asthma". International Archives of Allergy and Immunology 162 (2): 135–42. 2013. doi:10.1159/000351422. PMID 23921438.
- ↑ "Mechanisms of aspirin-intolerant asthma: identifying inflammatory pathways in the pathogenesis of asthma". International Archives of Allergy and Immunology 163 (1): 1–2. 2014. doi:10.1159/000355949. PMID 24247362.
- ↑ "Human 5-, 12- and 15-lipoxygenase-1 coexist in kidney but show opposite trends and their balance changes in cancer". Oncology Reports 28 (4): 1275–82. October 2012. doi:10.3892/or.2012.1924. PMID 22825379.
- ↑ "Effects of gut-targeted 15-LOX-1 transgene expression on colonic tumorigenesis in mice". Journal of the National Cancer Institute 104 (9): 709–16. May 2012. doi:10.1093/jnci/djs187. PMID 22472308.
- ↑ "Is 15-LOX-1 a tumor suppressor?". Journal of the National Cancer Institute 104 (9): 645–7. May 2012. doi:10.1093/jnci/djs192. PMID 22472307.
- ↑ "Conditional expression of human 15-lipoxygenase-1 in mouse prostate induces prostatic intraepithelial neoplasia: the FLiMP mouse model". Neoplasia 8 (6): 510–22. 2006. doi:10.1593/neo.06202. PMID 16820097.
- "Effects of mutant p53 expression on human 15-lipoxygenase-promoter activity and murine 12/15-lipoxygenase gene expression: evidence that 15-lipoxygenase is a mutator gene". Proceedings of the National Academy of Sciences of the United States of America 96 (8): 4378–83. 1999. doi:10.1073/pnas.96.8.4378. PMID 10200270. Bibcode: 1999PNAS...96.4378K.
Further reading
- "Effects of mutant p53 expression on human 15-lipoxygenase-promoter activity and murine 12/15-lipoxygenase gene expression: evidence that 15-lipoxygenase is a mutator gene". Proceedings of the National Academy of Sciences of the United States of America 96 (8): 4378–83. 1999. doi:10.1073/pnas.96.8.4378. PMID 10200270. Bibcode: 1999PNAS...96.4378K.
- "The effect of 15-lipoxygenase-1 expression on cancer cells". Current Urology Reports 3 (3): 207–14. June 2002. doi:10.1007/s11934-002-0066-8. PMID 12084190.
- "Cloning of human airway 15-lipoxygenase: identity to the reticulocyte enzyme and expression in epithelium". The American Journal of Physiology 262 (4 Pt 1): L392–8. April 1992. doi:10.1152/ajplung.1992.262.4.L392. PMID 1566855.
- "Purification of two forms of arachidonate 15-lipoxygenase from human leukocytes". European Journal of Biochemistry 202 (3): 1231–8. December 1991. doi:10.1111/j.1432-1033.1991.tb16495.x. PMID 1662607.
- "Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase". Proceedings of the National Academy of Sciences of the United States of America 89 (1): 217–21. January 1992. doi:10.1073/pnas.89.1.217. PMID 1729692. Bibcode: 1992PNAS...89..217C.
- "The expression of 15-lipoxygenase gene and the presence of functional enzyme in cytoplasm and nuclei of pregnancy human myometria". Endocrinology 130 (2): 861–70. February 1992. doi:10.1210/endo.130.2.1733732. PMID 1733732.
- "Purification of 15-lipoxygenase from human leukocytes, evidence for the presence of isozymes". Advances in Prostaglandin, Thromboxane, and Leukotriene Research 21A: 101–4. 1991. PMID 1825526.
- "A primary determinant for lipoxygenase positional specificity". Nature 354 (6349): 149–52. November 1991. doi:10.1038/354149a0. PMID 1944593. Bibcode: 1991Natur.354..149S.
- "Immunocytochemical localization of arachidonate 15-lipoxygenase in erythrocytes, leukocytes, and airway cells". The Journal of Clinical Investigation 87 (4): 1139–45. April 1991. doi:10.1172/JCI115110. PMID 2010530.
- "Occurrence of the erythroid cell specific arachidonate 15-lipoxygenase in human reticulocytes". Biochemical and Biophysical Research Communications 160 (2): 954–60. April 1989. doi:10.1016/0006-291X(89)92528-X. PMID 2719708.
- "Arachidonic acid 15-lipoxygenase and airway epithelium. Biologic effects and enzyme purification". The American Review of Respiratory Disease 138 (6 Pt 2): S35–40. December 1988. doi:10.1164/ajrccm/138.6_pt_2.s35. PMID 3202520.
- "Molecular cloning and primary structure of human 15-lipoxygenase". Biochemical and Biophysical Research Communications 157 (2): 457–64. December 1988. doi:10.1016/S0006-291X(88)80271-7. PMID 3202857.
- "Arachidonate 15-lipoxygenase (omega-6 lipoxygenase) from human leukocytes. Purification and structural homology to other mammalian lipoxygenases". The Journal of Biological Chemistry 263 (11): 5328–32. April 1988. doi:10.1016/S0021-9258(18)60719-7. PMID 3356688.
- "Induction of 15-lipoxygenase by interleukin-13 in human blood monocytes". The Journal of Biological Chemistry 269 (44): 27631–4. November 1994. doi:10.1016/S0021-9258(18)47031-7. PMID 7961680.
- "Characterization and sequence of an additional 15-lipoxygenase transcript and of the human gene". Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1352 (3): 267–81. June 1997. doi:10.1016/s0167-4781(97)00005-5. PMID 9224951.
- "Membrane translocation of 15-lipoxygenase in hematopoietic cells is calcium-dependent and activates the oxygenase activity of the enzyme". Blood 91 (1): 64–74. January 1998. doi:10.1182/blood.V91.1.64. PMID 9414270.
- "Human 15-lipoxygenase gene promoter: analysis and identification of DNA binding sites for IL-13-induced regulatory factors in monocytes". Molecular Biology Reports 25 (3): 173–82. July 1998. doi:10.1023/A:1006813009006. PMID 9700053.
- "Induction of 15-lipoxygenase expression by IL-13 requires tyrosine phosphorylation of Jak2 and Tyk2 in human monocytes". The Journal of Biological Chemistry 273 (48): 32023–9. November 1998. doi:10.1074/jbc.273.48.32023. PMID 9822675.
- "A sensitive chemiluminescence method to measure the lipoxygenase catalyzed oxygenation of complex substrates". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1437 (1): 13–22. January 1999. doi:10.1016/s0005-2760(98)00176-3. PMID 9931410.
- "Effects of mutant p53 expression on human 15-lipoxygenase-promoter activity and murine 12/15-lipoxygenase gene expression: evidence that 15-lipoxygenase is a mutator gene". Proceedings of the National Academy of Sciences of the United States of America 96 (8): 4378–83. April 1999. doi:10.1073/pnas.96.8.4378. PMID 10200270. Bibcode: 1999PNAS...96.4378K.
External links
- Human ALOX15 genome location and ALOX15 gene details page in the UCSC Genome Browser.
Original source: https://en.wikipedia.org/wiki/ALOX15.
Read more |