Biology:Boletaceae
Boletaceae | |
---|---|
Cep, Boletus edulis | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Fungi |
Division: | Basidiomycota |
Class: | Agaricomycetes |
Order: | Boletales |
Family: | Boletaceae Chevall. (1826) |
Type genus | |
Boletus Fr. (1821)
| |
Subfamilies[1] | |
| |
Synonyms | |
|
The Boletaceae are a family of mushroom-forming fungi, primarily characterised by small pores on the spore-bearing hymenial surface (at the underside of the mushroom), instead of gills as are found in most agarics. Nearly as widely distributed as the agarics, the family is renowned for hosting some prime edible species highly sought after by mushroom hunters worldwide, such as the cep or king bolete (Boletus edulis). A number of rare or threatened species are also present in the family, that have become the focus of increasing conservation concerns. As a whole, the typical members of the family are commonly known as boletes.
Boletes are a group of mushrooms reasonably safe for human consumption, as none of them are known to be deadly to adults. Edible bolete species are especially suitable for novice collectors, since they pose little danger of being confused with deadly poisonous mushrooms, such as deadly Amanita species which bear gills instead of pores in their hymenial surface. Some boletes are toxic and may cause gastrointestinal poisoning if consumed, but these are unlikely to be confused with popular edible species in the family.
The family has been the subject of extensive systematic revisions in recent years, as some of the early established genera (particularly Boletus, Leccinum and Xerocomus), have revealed to be highly polyphyletic, and the original number of genera within the family had been underestimated. As a result, several new species and genera have been described from Asia, Europe and North America, while many existing species have been transferred to different genera, in concordance with phylogenetic results.
Description
Most species of Boletaceae produce large, fleshy mushrooms, with a more or less central stipe. The fruit bodies typically have tubular hymenophores, although a small number of species (e.g. Phylloporus) are lamellate. The spore deposit colours are commonly olivaceous (yellowish-green), yellowish, brownish, or vinaceous (red-wine coloured), and when viewed under the microscope spores are usually fusiform or subfusiform. In many species, parts of the fruit body will turn blue, red, or black when bruised or exposed to the air, as a result of the oxidation of pulvinic acid derivatives, like variegatic, xerocomic, and atrotomentinic acids.[2]
Taxonomy
Boletaceae were first described by the French botanist François Fulgis Chevallier in 1826, as a family distinct from Agaricaceae. Five genera were initially included in Chevallier's circumscription: Boletus (which is the type genus of the family), Cladoporus (now synonymous with Laetiporus[3]), Physisporus (now Perenniporia[4]), Polyporus, and Fistulina.[5] However, all of the original genera except Boletus have since been transferred to different families,[6][7] and several new Boletaceae genera have been described.
Genera
Rolf Singer, in the 4th edition (1986) of his Agaricales in Modern Taxonomy, included 26 genera and 415 species in Boletaceae.[7] In the Dictionary of the Fungi (10th edition, 2008), 35 Boletaceae genera were recognised, which collectively contained 787 species.[8] Molecular phylogenetic studies in the 2000s have revised the concept of the family; in a highly cited 2006 publication, Manfred Binder and David Hibbett recognised 38 genera within the family, many of which had remained at the time undescribed.[9] The number of Boletaceae genera increased significantly in the following years, as some of the early-established genera (Boletus, Leccinum, Xerocomus), further revealed to be highly polyphyletic.[10] In the comprehensive work of Wu and colleagues (2014),[1] seven major clades at subfamily level and 59 generic lineages were uncovered, including four new subfamilies (Austroboletoideae, Chalciporoideae, Leccinoideae, and Zangioideae) and 22 potential new genera. To formally name the generic lineages unravelled by molecular phylogenies, several new genera have since been described from Asia, Europe and North America including, among others, Baorangia,[11] Butyriboletus,[12] Cacaoporus,[13] Caloboletus,[14] Exsudoporus,[15] Imperator[16] and Rubroboletus.[17]
Some characters traditionally emphasised in morphology-based taxonomy, such as basidiospore ornamentation and "stuffed" pore morphology, revealed to be incongruent with molecular taxonomy, suggesting that certain traits evolved more than once within the family.[1][18]
Genus | Authority | Year | No. of species | Distribution |
---|---|---|---|---|
Afroboletus | Pegler & T.W.K.Young | 1981 | 7 | tropical Africa |
Alessioporus[19] | Gelardi, Vizzini & Simonini | 2014 | 1 | southern Europe |
Aureoboletus | Pouzar | 1957 | 17[20] | widespread |
Australopilus[21] | Halling & Fechner | 2012 | 1 | Australia |
Austroboletus | Wolfe | 1980 | 30 ~30
|
America, Australasia |
Baorangia[11] | G. Wu & Zhu L. Yang | 2015 | 2 >2
|
East Asia, North America |
Boletellus | Murrill | 1909 | 50 ~50
|
widespread |
Boletochaete | Singer | 1944 | 3 | Africa, Southeast Asia |
Boletus | Fr. | 1821 | 300 ~300*
|
widespread |
Borofutus[22] | Hosen & Zhu L.Yang | 2012 | 1 | Bangladesh |
Bothia | Halling, T.J.Baroni, & Binder | 2007 | 1 | North America |
Buchwaldoboletus | Pilát | 1962 | 3 | Europe, Australia |
Butyriboletus[12] | D.Arora & J.L.Frank | 2014 | 18 | widespread |
Cacaoporus[13] | Raspé & Vadthanarat | 2019 | 2 | Thailand |
Caloboletus[14] | Vizzini | 2014 | 13 | widespread |
Chalciporus | Bataille | 1908 | 25 | widespread |
Chamonixia | Rolland | 1899 | 8 | widespread |
Corneroboletus[23] | N.K.Zeng & Zhu L.Yang | 2012 | 1 | Singapore, Malaysia, tropical China |
Crocinoboletus[24] | N.K. Zeng, Zhu L. Yang & G. Wu | 2015 | 2 | East Asia, South Asia |
Cyanoboletus[25] | Gelardi, Vizzini & Simonini | 2014 | 3 | widespread |
Durianella[26] | A.W.Wilson & Manfr.Binder | 2008 | 1 | Malaysia, Borneo |
Erythrophylloporus[27] | Raspé, Vadthanarat & Lumyong | 2019 | 3 | China, Thailand |
Exsudoporus[15] | Vizzini, Simonini & Gelardi | 2014 | 3 | North America, Europe |
Fistulinella | Henn. | 1901 | 15 | pantropical |
Gastroboletus | Lohwag | 1962 | 13 | widespread |
Gastroleccinum | Thiers | 1989 | 1 | North America |
Harrya[21] | Halling, Nuhn & Osmundson | 2012 | 2 | Asia, North America, Central America |
Heimioporus | E.Horak | 2004 | 15 ~15
|
widespread |
Heliogaster[28] | (Kobayasi) Orihara & Iwase | 2010 | 1 | Japan |
Hemileccinum[29] | Šutara | 2008 | 3[20] | Europe, North America[20] |
Hortiboletus[30] | Simonini, Vizzini & Gelardi | 2015 | 4 | Europe, North America |
Imleria[31] | Vizzini | 2014 | 4[32] | Europe, Asia, North America[32] |
Imperator | Assyov et al. | 2015 | 3 | Europe, West Asia |
Kaziboletus[33] | Iqbal Hosen, Zhu L.Yang | 2021 | 1 | South Asia |
Lanmaoa[11] | G. Wu, Zhu L. Yang, Halling | 2015 | >5 | East Asia, North America |
Leccinellum | Bresinsky & Manfr. Binder | 2003 | 10 | widespread |
Leccinum | Gray | 1821 | 135 135
|
widespread |
Mucilopilus[1] | Wolfe | 1979 | 4[34] | North America, New Zealand[34] |
Mycoamaranthus | Castellano, Trappe & Malajczuk | 1992 | 3 | Australasia, Africa, Southeast Asia |
Neoboletus | Gelardi et al. | 2014 | 9 | Europe, Asia |
Nigroboletus[35] | Gelardi, Vizzini, E. Horak, T.H. Li & Ming Zhang | 2015 | 1 | China |
Octaviania | Vittad. | 1831 | 15 | widespread |
Parvixerocomus[11] | G. Wu & Zhu L. Yang, | 2015 | 2 | East Asia |
Paxillogaster | E.Horak | 1966 | 1 | South America |
Phylloboletellus | Singer | 1952 | 1 | Central and South America |
Phyllobolites | Singer | 1942 | 1 | South America |
Phylloporus | Quel. | 1888 | 50 ~50
|
cosmopolitan |
Pseudoaustroboletus[36] | Yan C. Li & Zhu L. Yang | 2014 | 1 | East Asia, South Asia |
Pseudoboletus | Šutara | 1991 | 2 | north temperate regions |
Pulchroboletus[19] | Vizzini, Simonini & Gelardi | 2014 | 1 | southern Europe |
Pulveroboletus | Murrill | 1909 | 25 | cosmopolitan |
Retiboletus | Manfr. Binder & Bresinsky | 2002 | 5 | north temperate regions |
Rheubarbariboletus[30] | Vizzini, Simonini & Gelardi | 2015 | 2 | Europe |
Rhodactina | Pegler & T.W.K.Young | 1989 | 2 | India, Thailand |
Rossbeevera[37] | T.Lebel & Orihara | 2011 | 9 | Asia, Australia |
Royoungia | Castellano, Trappe & Malajczuk | 1992 | 1 | Australia |
Rubroboletus[17] | Kuan Zhao & Zhu L.Yang | 2014 | 8 | Widespread |
Rugiboletus[11] | G. Wu & Zhu L. Yang | 2015 | 2 | East Asia |
Setogyroporus | Heinem. & Rammeloo | 1999 | 1 | tropical Africa |
Singerocomus[38] | T.W.Henkel & M.E.Sm. | 2016 | 3 | ?? |
Singeromyces | M.M.Moser | 1966 | 1 | Argentina |
Sinoboletus | M.Zang | 1992 | 10 | China |
Solioccasus[39] | Trappe, Osmundson, Manfr.Binder, Castellano & Halling | 2013 | 1 | Australasia |
Spongiforma[40] | Desjardin, Manf. Binder, Roekring & Flegel | 2009 | 2 | Thailand, Malaysia |
Strobilomyces | Berk. | 1851 | 20 ~20
|
cosmopolitan |
Suillellus | Murrill | 1909 | 11 | North America, Europe |
Sutorius[41] | Halling, Nuhn & Fechner | 2012 | 3 | North America, Costa Rica, Africa, S.E. Asia, Australia |
Tubosaeta | E.Horak | 1967 | 5 | Africa, Asia |
Tylopilus | P.Karst | 1881 | 111 111
|
widespread |
Veloporphyrellus | L.D.Gómez & Singer | 1984 | 1 | Central America |
Wakefieldia | Corner & Hawker | 1952 | 2 | Asia, Europe |
Xanthoconium | Singer | 1944 | 7 | cosmopolitan |
Xerocomellus[29] | Šutara | 2008 | 24 | North and South America, Europe |
Xerocomus[29] | Quel | 1887 | >20 | widespread |
Zangia[42] | Yan C.Li & Zhu L.Yang | 2011 | 6 | China |
(*) Note that the phylogenetic and taxonomic position of many taxa currently remaining in genus Boletus has not yet been clarified. The number of species in this genus will therefore significantly reduce in the following years, as more taxa will be transferred to different genera, or found to be synonyms.
Many other genera formerly part of this family have been moved into other, smaller families, as work with molecular phylogeny shows that they are more distantly related, even if morphologically similar. Representative of this adjustment, is the move of the slimy-capped genus Suillus to the family Suillaceae.
Distribution
Boletes are found worldwide, on every continent except Antarctica. Well-known and well-described in the temperate latitudes in the northern hemisphere, newer research has shown significant diversity in tropical and southern hemisphere regions as well. E. J. H. Corner found evidence of at least 60 species on the island of Singapore alone. In 1972 he described 140 species from the Malay Peninsula and Borneo and estimated there were at least as many yet to be documented.[43] Over 100 species belonging to 52 genera have been reported from China , which has emerged as one of the worldwide hotspots of Boletaceae diversity.[18] The family is also reasonably well-represented in the Mediterranean region, where many rare or range-restricted species can be found.[44]
Ecology
As heterotrophic organisms, the majority Boletaceae species are symbiotic, and form mutually beneficial ectomycorrhizal associations with various trees and shrubs.[45][46][47] However, a number of ancestral species in genera Buchwaldoboletus and Pseudoboletus, are saprotrophic or parasitic.[48][9][46] Evidence suggests that some, if not all, species of Chalciporus might also have a mycoparasitic interaction with other fungi.[46][10] The exact trophic status of some South American and African boletes, such as species of Phylloboletellus, is nonetheless not yet fully clarified, as fruit bodies are often found without the presence of ectomycorrhizal vegetation.[7][46]
Most frequently associated tree-hosts are members of the Fagaceae, particularly oak (Quercus), beech (Fagus) and chestnut (Castanea).[49][50][51] Fewer species are associated with conifers, mostly spruce (Picea) and fir (Abies). In the Mediterranean region, most boletes are strongly associated with evergreen oaks, particularly members of the "Ilex" group, such as the holm oak (Quercus ilex), the kermes oak (Q. coccifera), or the golden oak (Q. alnifolia).[44] Some boletes are also known to grow in association with Cistaceae shrubs, mainly Cistus[52] and Helianthemum,[53] and at least one species (Leccinellum corsicum) is exclusively associated with rockrose.[50][54]
Most boletes are sensitive to cold and fruit during warm spells in the summer and early months of the autumn, while some have very specific preferences with regards to substrate. For instance, the highly sought after Boletus aereus is mostly found on acidic soils,[55][50] whereas the poisonous Rubroboletus satanas is predominantly calciphilous and mostly occurs on chalk.[56][57] Other species, such as Hemileccinum impolitum or Leccinellum lepidum, are indifferent to the substrate and frequently occur on both calcareous and acidic soil.[44]
Conservation
A number of Boletaceae species are considered rare, vulnerable or endangered, and some have been included in regional or national Red Lists. Rubroboletus dupainii is listed among the 33 threatened fungi of Europe, as part of Appendix I of the Bern Convention.[58] Rubroboletus rhodoxanthus is considered extinct in England [59] and critically endangered in the Czech Republic.[60] Also critically endangered in the Czech Republic are Aureoboletus moravicus, Buchwaldoboletus sphaerocephalus, Butyriboletus fuscoroseus, Imperator rhodopurpureus, Leccinum roseotinctum and Rubroboletus rubrosanguineus.[60] Eleven species of Boletaceae, Boletus aereus, Boletus pinophilus, Butyriboletus regius, Hemileccinum impolitum, Imperator luteocupreus, I. rhodopurpureus, I. torosus, Rubroboletus dupainii, R. lupinus, R. pulchrotinctus and R. satanas, are considered vulnerable or endangered in North Macedonia and have been included in the national Red List of fungi.[61] Similarly, twenty species of Boletaceae are included in the Red List of fungi in Bulgaria.[62]
Research from the Mediterranean region suggests that many boletes might be under threat from accelerated climate changes and long-term drought. In a ten-year study from the island of Cyprus, most bolete species were found to be rare, highly restricted by low soil moisture and exhibited very erratic fruiting patterns strongly correlating to annual, late summer and early autumn precipitation.[44]
Edibility
A large number of boletes are edible, few are delicious and some are considered to be true culinary delicacies. The much sought after king bolete (Boletus edulis), in particular, is a species of high commercial value and has been described as "the wild mushroom par excellence".[63] In the Province of Parma in northern Italy, the four most sought after boletes, Boletus edulis, B. aereus, B. reticulatus and B. pinophilus, have been collected and commercially exploited for centuries.[64] Boletes are widely collected and sold in markets throughout Spain , particularly the province of Aragon.[65] Scandinavian cuisine praises boletes. [citation needed] They are a regular feature of Finnish cuisine and, especially the king bolete, is considered an unsurpassed culinary mushroom, widely used in various soups, sauces, casseroles and hotpots.[citation needed] Bolete mushrooms are sometimes also used as pizza topping, not unlike champignons, shiitake, or portobellos.
Two species of Butyriboletus, the royal bolete (B. regius) and the butter bolete (B. appendiculatus) are also culinary valued, though much less common than the ceps. In northern Europe, two of the commonest and most frequently collected edible boletes are the bay bolete (Imleria badia), whose pores bruise blue-green, and the orange birch bolete, which is a Leccinum with an orange cap and which bruises a bluish grey.[citation needed]
Several guidebooks recommend avoiding all red-pored boletes, but both Neoboletus luridiformis (= Neoboletus erythropus) and Suillellus luridus are edible when well-cooked and widely consumed in certain parts of Europe.
Lookalikes
Poisonous or otherwise inedible species are also present in the family, however, such as the unpalatable bitter species Caloboletus calopus and the aptly named bitter bolete (Tylopilus felleus), with a taste compared to bile, as well as some orange-capped species of Leccinum. As the bitter bolete resembles somewhat the king bolete, it can produce literally a bitter disappointment to the mushroom hunter. The rule of thumb is that the bitter bolete has pink pores, and a brownish stipe with a dark brown (sometimes approaching black) reticulum, while the cep has whitish pores, which in maturity become yellowish or sometimes with a faint olivaceous tint, a light-colored (white and/or similar in color to the rest of the stipe) reticulum and white hyphae tufts at the base of the stipe. The bitter bolete also lacks the stuffed or plugged pore appearance (caused by a hyphal mat of cheilocystidia) that is common in the cep and its allies. If uncertain, tasting a small piece of cap context should clinch the identification, since Tylopilus felleus has a strong, foul bitter taste.
Toxicity
Rubroboletus satanas has long been considered to be poisonous, though it is not known to have been responsible for any fatalities and the symptoms are predominantly gastrointestinal in nature. A glycoprotein, bolesatine, is thought to be responsible for the poisonings.[66] When given to mice, Bolesatine causes massive thrombosis,[67] while at lower concentrations it is a mitogen, inducing cell division to human T lymphocytes.[68] A similar compound, bolevenine, has been isolated from the poisonous Neoboletus venenatus in Japan.[69]
More recent studies have associated the poisoning caused by R. satanas with hyperprocalcitonemia,[70] and classified it as a distinct syndrome among fungal poisonings.[71] Several other boletes are known to cause varying degrees of gastrointestinal symptoms, especially if eaten raw or insufficiently cooked.
One incident of death associated with Rubroboletus pulcherrimus was reported in 1994; a couple developed gastrointestinal symptoms after eating this fungus, with the husband finally succumbing. An autopsy revealed infarction of the midgut.[72]
See also
References
- ↑ 1.0 1.1 1.2 1.3 "Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae". Fungal Diversity 69 (1): 93–115. 2014. doi:10.1007/s13225-014-0283-8.
- ↑ Nelson SF. (2010). "Bluing components and other pigments of Boletes". Fungi 3 (4): 11–14. http://www.fungimag.com/fall-2010-articles/BoletesLR.pdf.
- ↑ Kirk et al., (2008), p. 146.
- ↑ Kirk et al., (2008), p. 535.
- ↑ Chevallier FF. (1826) (in fr). Flore Générale des Environs de Paris. 1. p. 248.
- ↑ "A conspectus of the families of Aphyllophorales". Persoonia 3 (2): 199–324. 1964.
- ↑ 7.0 7.1 7.2 Singer R. (1986). The Agaricales in Modern Taxonomy (4th ed.). Königstein im Taunus, Germany: Koeltz Scientific Books. ISBN 3-87429-254-1.
- ↑ Kirk et al. (2008), p. 96.
- ↑ 9.0 9.1 "Molecular systematics and biological diversification of Boletales". Mycologia 98 (6): 971–81. 2006. doi:10.3852/mycologia.98.6.971. PMID 17486973.
- ↑ 10.0 10.1 "Phylogenetic overview of the Boletineae". Fungal Biology 117 (7–8): 479–511. 2013. doi:10.1016/j.funbio.2013.04.008. PMID 23931115.
- ↑ 11.0 11.1 11.2 11.3 11.4 "Four new genera of the fungal family Boletaceae". Fungal Diversity 81: 1–24. 2015. doi:10.1007/s13225-015-0322-0.
- ↑ 12.0 12.1 "Clarifying the butter Boletes: a new genus, Butyriboletus, is established to accommodate Boletus sect. Appendiculati, and six new species are described". Mycologia 106 (3): 464–80. 2014. doi:10.3852/13-052. PMID 24871600.
- ↑ 13.0 13.1 "Cacaoporus, a new Boletaceae genus, with two new species from Thailand.". MycoKeys 54: 1–29. 2019. doi:10.3897/mycokeys.54.35018. PMID 31231163.
- ↑ 14.0 14.1 Vizzini A. (10 June 2014). "Nomenclatural novelties". Index Fungorum (146): 1–2. ISSN 2049-2375. http://www.indexfungorum.org/Publications/Index%20Fungorum%20no.146.pdf.
- ↑ 15.0 15.1 Vizzini A. (22 August 2014). "Nomenclatural novelties". Index Fungorum (183): 1. ISSN 2049-2375. http://www.indexfungorum.org/Publications/Index%20Fungorum%20no.183.pdf.
- ↑ "Nomenclatural novelties". Index Fungorum (243). May 21, 2015. http://www.indexfungorum.org/Publications/HTML/Index%20Fungorum243.html.
- ↑ 17.0 17.1 "A new genus, Rubroboletus, to accommodate Boletus sinicus and its allies". Phytotaxa 188 (2): 61–77. 2014. doi:10.11646/phytotaxa.188.2.1.
- ↑ 18.0 18.1 "One hundred noteworthy boletes from China". Fungal Diversity 81: 25–188 [145]. 2016. doi:10.1007/s13225-016-0375-8.
- ↑ 19.0 19.1 "Alessioporus and Pulchroboletus (Boletaceae, Boletineae), two novel genera for Xerocomus ichnusanus and X. roseoalbidus from the European Mediterranean basin: Molecular and morphological evidence". Mycologia 106 (6): 1168–1187. 2014. doi:10.3852/14-042. PMID 24895429.
- ↑ 20.0 20.1 20.2 "Evolutionary relationships of Heimioporus and Boletellus (Boletales), with an emphasis on Australian taxa including new species and new combinations in Aureoboletus, Hemileccinum and Xerocomus". Australian Systematic Botany 28 (1): 1–22. 2015. doi:10.1071/SB14049.
- ↑ 21.0 21.1 "Affinities of the Boletus chromapes group to Royoungia and the description of two new genera, Harrya and Australopilus". Australian Systematic Botany 25 (6): 418–31. 2012. doi:10.1071/SB12028.
- ↑ "Borofutus, a new genus of Boletaceae from tropical Asia: phylogeny, morphology and taxonomy". Fungal Diversity 58: 215–226. 2013. doi:10.1007/s13225-012-0211-8.
- ↑ "Corneroboletus, a new genus to accommodate the southeastern Asian Boletus indecorus". Mycologia 104 (6): 1420–32. 2012. doi:10.3852/11-326. PMID 22684293.
- ↑ "Crocinoboletus, a new genus of Boletaceae (Boletales) with unusual boletocrocin polyene pigments". Phytotaxa 175 (3): 133–140. 2014. doi:10.11646/phytotaxa.175.3.2.
- ↑ Vizzini A. (7 June 2014). "Nomenclatural novelties". Index Fungorum (176): 1. ISSN 2049-2375. http://www.indexfungorum.org/Publications/Index%20Fungorum%20no.176.pdf.
- ↑ "Durianella, a new gasteroid genus of boletes from Malaysia". Mycologia 100 (6): 956–61. 2008. doi:10.3852/08-062. PMID 19202849. http://www.clarku.edu/faculty/dhibbett/mbinder/pdf/Durianella.pdf. Retrieved 2010-06-03.
- ↑ "Two new Erythrophylloporus species (Boletaceae) from Thailand, with two new combinations of American species.". MycoKeys 55: 29-57. 2019. doi:10.3897/mycokeys.55.34570.
- ↑ "Taxonomic reconsideration of a sequestrate fungus, Octaviania columellifera, with the proposal of a new genus, Heliogaster, and its phylogenetic relationships in the Boletales". Mycologia 102 (1): 108–21. 2010. doi:10.3852/08-168. PMID 20120234.
- ↑ 29.0 29.1 29.2 Šutara J. (2008). "Xerocomus s. l. in the light of the present state of knowledge". Czech Mycology 60 (1): 29–62. doi:10.33585/cmy.60104. http://web.natur.cuni.cz/cvsm/CM60104F.pdf.
- ↑ 30.0 30.1 Vizzini A (26 May 2015). "Nomenclatural novelties". Index Fungorum (244): 1. ISSN 2049-2375. http://www.indexfungorum.org/Publications/HTML/Index%20Fungorum244.html.
- ↑ Vizzini A. (12 June 2014). "Nomenclatural novelties". Index Fungorum (147): 1. ISSN 2049-2375. http://www.indexfungorum.org/Publications/Index%20Fungorum%20no.147.pdf.
- ↑ 32.0 32.1 "The genus Imleria (Boletaceae) in East Asia". Phytotaxa 191 (1): 81–98. 2014. doi:10.11646/phytotaxa.191.1.5.
- ↑ "Kaziboletus, a new boletoid genus of Boletaceae associated with Shorea robusta in Bangladesh". Mycological Progress 20 (9): 1145–1156. 2021. doi:10.1007/s11557-021-01723-7.
- ↑ 34.0 34.1 Wolfe CB. (1979). "Mucilopilus, a new genus of the Boletaceae, with emphasis on North American taxa". Mycotaxon 10 (1): 116–32. http://www.cybertruffle.org.uk/cyberliber/59575/0010/001/0116.htm.
- ↑ "Circumscription and taxonomic arrangement of Nigroboletus roseonigrescens gen. et sp. nov., a new member of Boletaceae from tropical south–eastern China". PLOS ONE 10 (8): e0134295. 2015. doi:10.1371/journal.pone.0134295. PMID 26263180. Bibcode: 2015PLoSO..1034295G.
- ↑ "A new genus Pseudoaustroboletus (Boletaceae, Boletales) from Asia as inferred from molecular and morphological data". Mycological Progress 13 (4). 2014. doi:10.1007/s11557-014-1011-1. 1011.
- ↑ "Erratum to: The sequestrate genus Rossbeevera T.Lebel & Orihara gen. nov. (Boletaceae) from Australasia and Japan: new species and new combinations". Fungal Diversity 52: 1–73. 2012. doi:10.1007/s13225-011-0118-9.
- ↑ "Singerocomus - Search Page". Species Fungorum. http://www.speciesfungorum.org/Names/Names.asp?strGenus=Singerocomus.
- ↑ "Australasian sequestrate fungi 18: Solioccasus polychromus gen. & sp nov., a richly colored, tropical to subtropical, hypogeous fungus". Mycologia 105 (4): 888–95. 2013. doi:10.3852/12-046. PMID 23709482.
- ↑ "Spongiforma, a new genus of gasteroid boletes from Thailand". Fungal Diversity 37: 1–8. 2009.
- ↑ "Sutorius: a new genus for Boletus eximius". Mycologia 104 (4): 951–61. April 11, 2012. doi:10.3852/11-376. PMID 22495445.
- ↑ "Zangia, a new genus of Boletaceae supported by molecular and morphological evidence". Fungal Diversity 49: 125–43. 2011. doi:10.1007/s13225-011-0096-y.
- ↑ Corner EJH. (1972). Boletus in Malaysia. Government Printing Office/Botanic Gardens, Singapore. OCLC 668353.
- ↑ 44.0 44.1 44.2 44.3 "Present status and future of boletoid fungi (Boletaceae) on the island of Cyprus: cryptic and threatened diversity unraveled by 10-year study.". Fungal Ecology 41 (13): 65–81. 2019. doi:10.1016/j.funeco.2019.03.008.
- ↑ "Fungal relationships and structural identity of their ectomycorrhizae Mycological Progress". Mycologia 5 (2): 67–107. 2006. doi:10.3852/13-052. PMID 24871600.
- ↑ 46.0 46.1 46.2 46.3 Tedersoo L, May TW, Smith ME (2010). "Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages". Mycorrhiza 20 (4): 217–263. doi:10.1007/s00572-009-0274-x. PMID 20191371.
- ↑ Tedersoo L, Smith ME (2013). "Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground". Fungal Biol. Rev. 27 (3–4): 83–99. doi:10.1016/j.fbr.2013.09.001.
- ↑ Pilát A. (1969). "Buchwaldoboletus. Genus novum Boletacearum". Friesia 9 (1–2): 217–8.
- ↑ Alessio CL. (1985). Boletus Dill. ex L. (sensu lato). Fungi Europaei. 2. Saronno, Italy: Libreria editrice Biella Giovanna.
- ↑ 50.0 50.1 50.2 Muñoz JA. (2005). Fungi Europaei 2: Boletus s.l.. Italy: Edizioni Candusso. ISBN 978-88-901057-6-0.
- ↑ Galli R. (2007) (in it). I Boleti. Atlante pratico-monographico per la determinazione dei boleti (3rd ed.). Milano, Italy: Dalla Natura.
- ↑ Comandini, O.; Contu, M.; Rinaldi, A.C. (2006). "An overview of Cistus ectomycorrhizal fungi". Mycorrhiza 16 (6): 381–395. doi:10.1007/s00572-006-0047-8. PMID 16896800.
- ↑ Barden N. (2007). "Helianthemum grasslands of the Peak District and their possible mycorrhizal associates". Field Mycology 8 (4): 119–26. doi:10.1016/S1468-1641(10)60384-2.
- ↑ Loizides M. (2016). "Macromycetes within Cistaceae-dominated ecosystems in Cyprus". Mycotaxon. http://www.mycotaxon.com/resources/checklists/Loizides-v131-1-checklist.pdf.
- ↑ Mushrooms & Toadstools of Britain & Europe. London, UK: Harper-Collins. 1995.
- ↑ Fungi of Northern Europe 1: Larger Fungi (Excluding Gill-Fungi). Penguin. 1977. p. 104. ISBN 0-14-063005-8.
- ↑ (in fr) Flore mycologique d'Europe. Documents Mycologiques Mémoire Hors série no. 6.. Association d’Écologie et de Mycologie, Lille. 2001. pp. 1–163.
- ↑ Dahlberg, A.; Croneborg, B. (2006). The 33 Threatened Fungi in Europe. Council of Europe. ISBN 978-92-871-5928-1.
- ↑ British Boletes: with key to species (7th ed.). 2016.
- ↑ 60.0 60.1 Mikšik M. (2012). "Rare and protected species of boletes of the Czech Republic". Field Mycology 13 (1): 8–16. doi:10.1016/j.fldmyc.2011.12.003.
- ↑ "Contribution to Macedonian red list of fungi". Proceedings of the 4th Congress of Ecologists of Macedonia with International Participation Ohrid 12-15, Special issue 28: 68–73. 2013.
- ↑ "Red list of fungi in Bulgaria.". Mycologia Balcan 3 (1): 81–87. 2006.
- ↑ Carluccio A. (2003). The Complete Mushroom Book. London, UK: Quadrille. ISBN 978-1-84400-040-1.
- ↑ "Nationalization and globalization trends in the wild mushroom commerce of Italy with emphasis on porcini (Boletus edulis and allied species)". Economic Botany 62 (3): 307–22. 2008. doi:10.1007/s12231-008-9037-4.
- ↑ "Collection, marketing and cultivation of edible fungi in Spain". Micologia Aplicada International 16 (2): 25–33. 2004. https://www.uni-due.de/~bbo010/deRoman/De%20Roman,%20Boa%20Micologia%20Aplicada%202004.pdf. Retrieved 28 August 2015.
- ↑ "Characterization of bolesatine, a toxic protein from the mushroom Boletus satanas Lenz and its effects on kidney cells". Toxicology 66 (2): 213–24. 1991. doi:10.1016/0300-483X(91)90220-U. PMID 1707561.
- ↑ "Aspirin (R) and heparin prevent hepatic blood stasis and thrombosis induced by the toxic glycoprotein Bolesatine in mice". Human & Experimental Toxicology 17 (11): 620–624. 1998. doi:10.1191/096032798678908017. PMID 9865419.
- ↑ Licastro F, Morini MC, Kretz O, Dirheimer G, Creppy EE; Stirpe F. (1993). "Mitogenic activity and immunological properties of bolesatine, a lectin isolated from the mushroom Boletus satanas Lenz". International Journal of Biochemistry. 25 (5): 789–792.
- ↑ "Bolevenine, a toxic protein from the Japanese toadstool Boletus venenatus". Phytochemistry 68 (56): 893–98. 2007. doi:10.1016/j.phytochem.2006.11.037. PMID 17254619. Bibcode: 2007PChem..68..893M.
- ↑ Merlet A, Dauchy FA, Dupon M. (2012). Hyperprocalcitonemia due to mushroom poisoning. Clin Infect Dis. 54: 307–308.
- ↑ White, Julian; Weinstein, Scott A.; De Haro, Luc; Bédry, Regis; Schaper, Andreas; Rumack, Barry H.; Zilker, Thomas (2019). "Mushroom poisoning: A proposed new clinical classification". Toxicon 157: 53–65. doi:10.1016/j.toxicon.2018.11.007. PMID 30439442.
- ↑ Benjamin DR. (1995). "Red-pored boletes". Mushrooms: poisons and panaceas—A Handbook for Naturalists, Mycologists and Physicians. New York, New York: WH Freeman and Company. pp. 359–60.
Cited texts
- Dictionary of the Fungi (10th ed.). Wallingford, UK: CAB International. 2008. ISBN 978-0-85199-826-8.
External links
Wikidata ☰ Q899266 entry
Original source: https://en.wikipedia.org/wiki/Boletaceae.
Read more |