Biology:Prenyltransferase

From HandWiki
Prenyltransferase and squalene oxidase repeat
PDB 1sqc EBI.jpg
Structure of a squalene cyclase.[1]
Identifiers
SymbolPrenyltrans
PfamPF00432
Pfam clanCL0059
InterProIPR001330
PROSITEPDOC00825
SCOP21sqc / SCOPe / SUPFAM
OPM superfamily37
OPM protein1w6k

Prenyltransferases (PTs) are a class of enzymes that transfer allylic prenyl groups to acceptor molecules. Prenyl transferases commonly refer to isoprenyl diphosphate syntheses (IPPSs).[2][3] Prenyltransferases are a functional category and include several enzyme groups that are evolutionarily independent.

Prenyltransferases are commonly divided into two classes, cis (or Z) and trans (or E), depending upon the stereochemistry of the resulting products. Examples of trans-prenyltranferases include dimethylallyltranstransferase, and geranylgeranyl pyrophosphate synthase. Cis-prenyltransferases include dehydrodolichol diphosphate synthase (involved in the production of a precursor to dolichol). Trans- and cis-prenyltransferases are evolutionarily unrelated to each other and there is no sequential and structural similarity.

The beta subunit of the farnesyltransferases is responsible for peptide binding. Squalene-hopene cyclase is a bacterial enzyme that catalyzes the cyclization of squalene into hopene, a key step in hopanoid (triterpenoid) metabolism.[1] Lanosterol synthase (EC 5.4.99.7) (oxidosqualene-lanosterol cyclase) catalyzes the cyclization of (S)-2,3-epoxysqualene to lanosterol, the initial precursor of cholesterol, steroid hormones and vitamin D in vertebrates and of ergosterol in fungi.[4] Cycloartenol synthase (EC 5.4.99.8) (2,3-epoxysqualene-cycloartenol cyclase) is a plant enzyme that catalyzes the cyclization of (S)-2,3-epoxysqualene to cycloartenol.

Human proteins containing this domain

FNTB; LSS; PGGT1B; RABGGTB

References

  1. 1.0 1.1 "Structure and function of a squalene cyclase". Science 277 (5333): 1811–1815. 1997. doi:10.1126/science.277.5333.1811. PMID 9295270. 
  2. "Structure and function of cis-prenyl chain elongating enzymes". The Chemical Record 6 (4): 194–205. 2006. doi:10.1002/tcr.20083. PMID 16900467. 
  3. Liang, Po-Huang; Ko, Tzu-Ping; Wang, Andrew H.-J (July 2002). "Structure, mechanism and function of prenyltransferases: Structure, mechanism and function of prenyltransferases" (in en). European Journal of Biochemistry 269 (14): 3339–3354. doi:10.1046/j.1432-1033.2002.03014.x. PMID 12135472. http://doi.wiley.com/10.1046/j.1432-1033.2002.03014.x. 
  4. "A specific amino acid repeat in squalene and oxidosqualene cyclases". Trends Biochem. Sci. 19 (4): 157–158. 1994. doi:10.1016/0968-0004(94)90276-3. PMID 8016864. 

External links

This article incorporates text from the public domain Pfam and InterPro: IPR001330