Biology:Radioligand

From HandWiki
Short description: Radioactive biochemical substance used for diagnosis or for study of receptor systems

A radioligand is a radioactive biochemical substance, in particular, a ligand that is radiolabeled. Radioligands are used for diagnosis or for research-oriented study of the receptor systems of the body, and for anti-cancer radioligand therapy.

In a neuroimaging application the radioligand is injected into the pertinent tissue, or infused into the bloodstream. It binds to its receptor. When the radioactive isotope in the ligand decays it can be measured by positron emission tomography (PET) or single-photon emission computed tomography (SPECT). In in vivo systems it is often used to quantify the binding of a test molecule to the binding site of a radioligand. The higher the affinity of the molecule the more radioligand is displaced from the binding site and the increasing radioactive decay can be measured by scintillography. This assay is commonly used to calculate the binding constant of molecules to receptors.

The transport of the radioligand is described by receptor kinetics.

History

Radioligands are credited with making possible the study of biomolecular behaviour, a previously mysterious area of research that had evaded researchers.[1] With this capacity radioligand techniques enabled researchers to identify receptor devices within cells.

Radioactive isotopes commonly used

In PET the isotopes fluorine-18, carbon-11, and copper-64 are often used in molecular imaging.

List of radioligands

Main page: Biology:List of PET radiotracers

Radioligands may be constructed to bind selectively to a particular neuroreceptor or a particular neurotransmitter transporter. Examples of radioligands include:

See also

References

  1. Niehoff, Debra (2005). The Language of Life: How cells communicate in life & disease. Joseph Henry Press. ISBN 0-309-08989-1. https://archive.org/details/languageoflifeho0000nieh. 
  2. Wong, Dean F.; Lever, John R.; Hartig, Paul R.; Dannals, Robert F.; Villemagne, Victor; Hoffman, Beth J.; Wilson, Alan A.; Ravert, Hayden T. et al. (1987). "Localization of serotonin 5-HT2 receptors in living human brain by positron emission tomography using N1-([11C]-methyl)-2-bromo-LSD". Synapse 1 (5): 393–398. doi:10.1002/syn.890010502. PMID 2905532. 
  3. Karen H. Adams, Lars H. Pinborg, Claus Svarer, S. G. Hasselbalch, Søren Holm, Steven Haugbøl, K. Madsen, Vibe G. Frøkjær, L. Martiny Olaf B. Paulson, Gitte Moos Knudsen (March 2004). "A database of [18F]-altanserin binding to 5-HT2A receptors in normal volunteers: normative data and relationship to physiological and demographic variables". NeuroImage 21 (3): 1105–1113. doi:10.1016/j.neuroimage.2003.10.046. ISSN 1053-8119. PMID 15006678. 
  4. J. C. Baron; Y. Samson; D. Comar; C. Crouzel; P. Deniker; Y. Agid (1985). "Etude in vivo des recepteurs serotoninergiques centraux chez l'homme par tomographie a positions. [In vivo study of central serotoninergic receptors in man using positron tomography]" (in French). Revue neurologique 141 (8–9): 537–545. PMID 2935920. 
  5. Reimold M; Smolka MN; Zimmer A et al. (2007). "Reduced availability of serotonin transporters in obsessive-compulsive disorder correlates with symptom severity - a [11C]DASB PET study". J Neural Transm 114 (12): 1603–9. doi:10.1007/s00702-007-0785-6. PMID 17713719. 
  6. Pertwee RG (1999). "Pharmacology of cannabinoid receptor ligands". Curr. Med. Chem. 6 (8): 635–64. doi:10.2174/0929867306666220401124036. PMID 10469884. 
  7. Alexander Hammers, Matthias J. Koepp, Mark P. Richardson, Rene Hurlemann, David J. Brooks & John S. Duncan (June 2003). "Grey and white matter flumazenil binding in neocortical epilepsy with normal MRI. A PET study of 44 patients". Brain 126 (Pt 6): 1300–1308. doi:10.1093/brain/awg138. PMID 12764053. 
  8. "Dopamine receptors labelled by PHNO". Synapse 14 (4): 254–262. August 1993. doi:10.1002/syn.890140403. PMID 7902615. http://www3.interscience.wiley.com/journal/109702957/abstract. 
  9. Volkow ND; Wang GJ; Fowler JS; Logan J; Franceschi D; Maynard L; Ding YS; Gatley SJ et al. (March 2002). "Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications". Synapse 43 (3): 181–187. doi:10.1002/syn.10038. PMID 11793423. https://zenodo.org/record/1229367. 

Further reading

  • John Charles Matthews (1993). Fundamentals of Receptor, Enzyme, and Transport Kinetics. CRC Press. ISBN 0-8493-4426-3.