Chemistry:2,1,3-Benzothiadiazole

From HandWiki
Short description: Organic bicyclic chemical
2,1,3-Benzothiadiazole
2,1,3-Benzothiadiazole.svg
Names
Preferred IUPAC name
2,1,3-Benzothiadiazole
Other names
  • Piazthiole
  • Benzisothiadiazole
  • Benzo[1,2,5]thiadiazole
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 205-985-2
UNII
Properties
C6H4N2S
Molar mass 136.17 g·mol−1
Melting point 54.0 °C (129.2 °F; 327.1 K)
Boiling point 203.0 °C (397.4 °F; 476.1 K)
Related compounds
Related compounds
1,2,3-Benzothiadiazole
Hazards
GHS pictograms GHS07: Harmful
GHS Signal word Warning
H315, H319, H335
P261, P264, P271, P280, P302+352, P304+340, P305+351+338, P312, P321, P332+313, P337+313, P362, P403+233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

2,1,3-Benzothiadiazole is a bicyclic molecule composed of a benzene ring that is fused to a 1,2,5-thiadiazole.

Preparation and structure

2,1,3-Benzothiadiazole has been known since the 19th century. It is readily prepared in at least 85% yield from o-phenylenediamine by reaction with two equivalents of thionyl chloride in pyridine. The by-products are sulfur dioxide and HCl.[1]

2,1,3-Benzothiadiazole synthesis balanced.png

There are a number of alternative methods used to make this heterocycle and these have been reviewed.[2][3] The crystal structure of the compound was determined in 1951, when it had the common name piazthiol(e).[4]

Reactions

The extent of the aromaticity of the compound was examined by a study of its proton NMR spectrum and comparison with naphthalene, which allowed the conclusion that it and related oxygen and selenium heterocycles did behave as 10-electron systems in which the 2-heteroatom contributed its lone pair to the ring current, in accordance with Hückel's rule.[5]

As a result, 2,1,3-benzothiadiazole undergoes the standard chemistry of aromatic compounds, for example readily forming nitro[1] and chloro derivatives.[6] The chemistry of this heterocycle and its simple derivatives has been reviewed.[7]

Under reducing conditions, 2,1,3-benzothiadiazoles can be converted back to the 1,2-diaminobenzene compounds from which they were prepared. This can be a useful way to protect a pair of reactive amino groups while other transformations are performed in the benzene ring to which they are attached.[8]

Bromination of 2,1,3-Benzothiadiazole is commonly performed to synthesize 4,7-dibromo-2,1,3-benzothiadiazole. This derivative is extensively used as building block in the design and synthesis of larger molecules and conductive polymers via Suzuki-Miyaura cross-coupling reactions.[9]

Typical bromination conditions used in the synthesis of ,7-dibromo-2,1,3-benzothiadiazole

Derivatives

2,1,3-Benzothiadiazole derivatives containing carbazole units have been found to be luminiscent, with high emission intensity and quantum efficiency.[10]

Different π-extended molecular systems based on 2,1,3-benzothiadiazole have been built to study fundamental structure–property relationships.[8] One example of this type of oligomer consist of extended thiophene building blocks as electron donors and 2,1,3-benzothiadiazole as electron aceptor. This oligomer was synthesized using a Sonogashira cross-coupling reaction and it showed low HOMO–LUMO gaps which could be interesting for organic semiconductor applications.[11]

Asymmetric derivatives with diphenylamine donors, cyanoacrylic acid acceptors and thiophene linkers bridged by a 2,1,3-benzothiadiazole have been designed as organic dyes with improved charge separation properties[12] when compared to classic cyanine[13] and hemicyanine[14] dyes.

Applications

2,1,3-Benzothiadiazole has been of interest as a redox-active organic component in flow batteries owing to its favourable solubility, low reduction potential and fast electrochemical kinetics.[15]

Such properties in derivatives containing this heterocycle have made it of growing interest in dyestuffs,[16] white light-emitting polymers,[8][17] solar cells,[18] and in luminescence studies.[19]

References

  1. 1.0 1.1 Pesin, V. G.; Sergeev, V. A. (1969). "Research on 2,1,3-thia- and selenadiazole". Chemistry of Heterocyclic Compounds 3 (5): 662–666. doi:10.1007/BF00468340. 
  2. Storr; Gilchrist, eds (2004). "Product Class 11: 1,2,5-Thiadiazoles and Related Compounds". Category 2, Hetarenes and Related Ring Systems. doi:10.1055/sos-SD-013-00458. ISBN 9783131122810. 
  3. Rakitin, Oleg A. (2019). "Recent Developments in the Synthesis of 1,2,5-Thiadiazoles and 2,1,3-Benzothiadiazoles". Synthesis 51 (23): 4338–4347. doi:10.1055/s-0039-1690679. 
  4. Luzzati, Z.Z. (1951). "Structure cristalline de piasélénol, piazthiol et benzofurazane". Acta Crystallographica 4 (3): 193–200. doi:10.1107/S0365110X51000702. 
  5. Fedin, E. I.; Todres, Z. V. (1970). "Studies in the field of aromatic heterocycles". Chemistry of Heterocyclic Compounds 4 (3): 308–313. doi:10.1007/BF00755265. https://link.springer.com/content/pdf/10.1007/BF00755265.pdf. 
  6. Pesin, V. G.; d'Yachenko, E. K. (1969). "Researches on 2,1,3-thia-and selenadiazole". Chemistry of Heterocyclic Compounds 3: 68–70. doi:10.1007/BF00944264. 
  7. Houben-Weyl Methods of Organic Chemistry Vol. E 8d, 4th Edition Supplement: Hetarenes III (Five-Membered Rings with Two and More Heteroatoms in the Ring System) - Part 4. Georg Thieme Verlag. 14 May 2014. ISBN 9783131812445. 
  8. 8.0 8.1 8.2 Neto, Brenno A. D.; Lapis, Alexandre A. M.; da Silva Júnior, Eufrânio N.; Dupont, Jairton (January 2013). "2,1,3-Benzothiadiazole and Derivatives: Synthesis, Properties, Reactions, and Applications in Light Technology of Small Molecules". European Journal of Organic Chemistry 2013 (2): 228–255. doi:10.1002/ejoc.201201161. 
  9. Huang, Jian; Niu, Yuhua; Yang, Wei; Mo, Yueqi; Yuan, Ming; Cao, Yong (2002-07-01). "Novel Electroluminescent Polymers Derived from Carbazole and Benzothiadiazole" (in en). Macromolecules 35 (16): 6080–6082. doi:10.1021/ma0255130. ISSN 0024-9297. https://pubs.acs.org/doi/10.1021/ma0255130. 
  10. Tao, Yun-Mei; Li, Hong-Yan; Xu, Qiu-Lei; Zhu, Yu-Cheng; Kang, Ling-Chen; Zheng, You-Xuan; Zuo, Jing-Lin; You, Xiao-Zeng (2011). "Synthesis and characterization of efficient luminescent materials based on 2,1,3-benzothiadiazole with carbazole moieties" (in en). Synthetic Metals 161 (9–10): 718–723. doi:10.1016/j.synthmet.2011.01.020. https://linkinghub.elsevier.com/retrieve/pii/S0379677911000348. 
  11. Kitamura, Chitoshi; Saito, Kakuya; Ouchi, Mikio; Yoneda, Akio; Yamashita, Yoshiro (October 2002). "Synthesis and Crystal Structure of 4,7-bis (2-thienylethynyl)-2,1,3-benzothiadiazole" (in en). Journal of Chemical Research 2002 (10): 511–513. doi:10.3184/030823402103170565. ISSN 1747-5198. 
  12. Velusamy, Marappan; Justin Thomas, K. R.; Lin, Jiann T.; Hsu, Ying-Chan; Ho, Kuo-Chuan (2005-05-01). "Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells" (in en). Organic Letters 7 (10): 1899–1902. doi:10.1021/ol050417f. ISSN 1523-7060. PMID 15876014. https://pubs.acs.org/doi/10.1021/ol050417f. 
  13. Ehret, A.; Stuhl, L.; Spitler, M. T. (2001-10-01). "Spectral Sensitization of TiO 2 Nanocrystalline Electrodes with Aggregated Cyanine Dyes" (in en). The Journal of Physical Chemistry B 105 (41): 9960–9965. doi:10.1021/jp011952+. ISSN 1520-6106. https://pubs.acs.org/doi/10.1021/jp011952%2B. 
  14. Yao, Qiao-Hong; Meng, Fan-Shun; Li, Fu-You; Tian, He; Huang, Chun-Hui (2003-04-16). "Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode". Journal of Materials Chemistry 13 (5): 1048–1053. doi:10.1039/b300083b. http://xlink.rsc.org/?DOI=b300083b. 
  15. Duan, Wentao; Huang, Jinhua; Kowalski, Jeffrey A.; Shkrob, Ilya A.; Vijayakumar, M.; Walter, Eric; Pan, Baofei; Yang, Zheng et al. (2017). ""Wine-Dark Sea" in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability". ACS Energy Letters 2 (5): 1156–1161. doi:10.1021/acsenergylett.7b00261. 
  16. Frizon, Tiago Elias Allievi; Valdivia Martínez, Julio César; Westrup, José Luiz; Duarte, Rodrigo da Costa; Zapp, Eduardo; Domiciano, Kelvin Guessi; Rodembusch, Fabiano Severo; Dal-Bó, Alexandre Gonçalves (December 2016). "2,1,3-Benzothiadiazole-based fluorophores. Synthesis, electrochemical, thermal and photophysical characterization". Dyes and Pigments 135: 26–35. doi:10.1016/j.dyepig.2016.07.011. 
  17. Wu, Hongbin; Ying, Lei; Yang, Wei; Cao, Yong (2010). "White-Emitting Polymers and Devices". WOLEDs and Organic Photovoltaics. Green Energy and Technology. pp. 37–78. doi:10.1007/978-3-642-14935-1_2. ISBN 978-3-642-14934-4. 
  18. Wang, Yang; Michinobu, Tsuyoshi (2016). "Benzothiadiazole and its π-extended, heteroannulated derivatives: Useful acceptor building blocks for high-performance donor–acceptor polymers in organic electronics". Journal of Materials Chemistry C 4 (26): 6200–6214. doi:10.1039/C6TC01860B. 
  19. Sukhikh, Taisiya; Ogienko, D.; Bashirov, D.; Konchenkoa, S. (May 21, 2019). "Luminescent complexes of 2,1,3-benzothiadiazole derivatives". Russian Chemical Bulletin 68 (4): 651–661. doi:10.1007/s11172-019-2472-9.