Chemistry:Beryllocene

From HandWiki
Beryllocene
Slipped-sandwich structure of Cp2Be.svg
Identifiers
3D model (JSmol)
ChemSpider
Properties
C10H10Be
Molar mass 139.202 g·mol−1
Appearance colorless crystals
Melting point 59 °C (138 °F; 332 K)
Boiling point 233 °C (451 °F; 506 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Tracking categories (test):

Beryllocene is an organoberyllium compound with the chemical formula Be(C5H5)2. It was first prepared in 1959.[1] The colorless substance can be crystallized from petroleum ether in the form of white needles at −60 °C and decomposes quickly upon contact with atmospheric oxygen and water.[2]

Preparation

Beryllocene can be prepared by reacting beryllium chloride and sodium cyclopentadienide in benzene or diethyl ether:[3]

[math]\displaystyle{ \mathrm{BeCl_2 +\ 2\ Na(C_5H_5)\ \xrightarrow[]{Et_2O} Be(C_5H_5)_2 + 2\ NaCl } }[/math]

Properties

Physical

In contrast to the uncharged metallocenes of the transition metals V, Cr, Fe, Co, Ni, Ru and Os, which have a strictly symmetrical and therefore dipoleless structure, beryllocene has a clear electric dipole moment of 2.46 Debye (in benzene), or 2.24 Debye (in cyclohexane), indicating asymmetry of the molecule. In the IR spectrum there are signals at 1524, 1610, 1669, 1715 and 1733 cm−1, which also prove that the structure cannot correspond to that of ferrocene.[2] In contrast, the nuclear magnetic resonance spectrum shows only one signal down to a temperature of −135 °C, indicating either a symmetrical structure or a rapid fluctuation of the rings.[4]

Beryllocene shows different molecular geometries depending on the physical state. The low-temperature X-ray structure analysis shows a slipped sandwich structure, i.e. the rings are offset from each other - one ring is η5 coordinated with a Be-Cp distance of 152 pm, the second only η1 coordinated (Be-Cp distance: 181 pm).[5][6][7] The reason for the η5, η1 structure is that the orbitals of beryllocene can only be occupied with a maximum of 8 valence electrons. In the gas phase both rings η5 appear to be coordinated. In fact, one ring is significantly further from the central atom than the other (190 and 147 pm) and the apparent η5 coordination is due to a rapid fluctuation of the bond.[8] Based on gas-phase electron diffraction studies at 120 °C, Arne Haaland concluded in 1979 that the two rings are only about 80 pm shifted from each other and are not coordinated η51, but rather η53.[4]

Ernesto Carmon et al. studied the structure of beryllocenes with sterically more demanding ligands: Be(C5Me4H)2 and Be(C5Me5)2 using X-ray crystallographic analysis. They found that in the solid state Be(C5Me4H)2 has a slipped sandwich structure with η51 coordination, while Be(C5Me5)2 shows the classic η55 coordination. In the crystal, however, the Be-C distances are not the same length, but vary between 196.9(1) and 211.4(1) pm.[9]

Chemical

Beryllocene decomposes relatively quickly in tetrahydrofuran, forming a yellowish gel. Beryllocene crystals quickly form an oxide layer on the surface with atmospheric oxygen.

Beryllocene reacts violently in water to produce beryllium hydroxide and cyclopentadiene:[3][2]

Be(C
5
H
5
)
2
+ 2 H
2
O → Be(OH)
2
+ 2 C
5
H
6

Like magnesocene, beryllocene also forms ferrocene with iron(II) chloride.[2] The driving force is the formation of the very stable ferrocene molecule.

Be(C
5
H
5
)
2
+ FeCl
2
→ BeCl
2
+ Fe(C
5
H
5
)
2

There are reports in the literature that it can theoretically react exothermically with beryllium to generate C5H5BeBeC5H5.[10]

Safety

Beryllocene is toxic and carcinogenic.

References

  1. Rafael Fernández, Ernesto Carmona (Aug 2005). "Recent Developments in the Chemistry of Beryllocenes" (in en). European Journal of Inorganic Chemistry 2005 (16): 3197–3206. doi:10.1002/ejic.200500329. ISSN 1434-1948. http://doi.wiley.com/10.1002/ejic.200500329. Retrieved 2020-09-29. 
  2. 2.0 2.1 2.2 2.3 Fischer, Ernst Otto; Hofmann, Hermann P. (Feb 1959). "Über Aromatenkomplexe von Metallen, XXV. Di‐cyclopentadienyl‐beryllium" (in en). Chemische Berichte 92 (2): 482–486. doi:10.1002/cber.19590920233. ISSN 0009-2940. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cber.19590920233. 
  3. 3.0 3.1 Ernst Otto Fischer, Hermann P. Hofmann (Feb 1959). "Über Aromatenkomplexe von Metallen, XXV. Di-cyclopentadienyl-beryllium" (in de). Chemische Berichte 92 (2): 482–486. doi:10.1002/cber.19590920233. http://doi.wiley.com/10.1002/cber.19590920233. Retrieved 2020-09-29. 
  4. 4.0 4.1 Almenningen, Arne; Haaland, Arne; Lusztyk, Janusz (May 1979). "The molecular structure of beryllocene, (C5H5)2Be. A reinvestigation by gas phase electron diffraction" (in en). Journal of Organometallic Chemistry 170 (3): 271–284. doi:10.1016/S0022-328X(00)92065-5. https://linkinghub.elsevier.com/retrieve/pii/S0022328X00920655. 
  5. Elschenbroich, Christoph (2008). Organometallchemie. Teubner Studienbücher Chemie (6., überarb. Aufl ed.). Wiesbaden: Teubner. ISBN 978-3-8351-0167-8. 
  6. Wong, C. H.; Lee, T. Y.; Chao, K. J.; Lee, S. (1972-06-15). "Crystal structure of bis(cyclopentadienyl)beryllium at –120°C". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 28 (6): 1662–1665. doi:10.1107/S0567740872004820. https://scripts.iucr.org/cgi-bin/paper?S0567740872004820. 
  7. Huheey, James E.; Keiter, Ellen A.; Keiter, Richard L.; Steudel, Ralf; Huheey, James E. (2003). Anorganische Chemie: Prinzipien von Struktur und Reaktivität (3., durchges. Aufl ed.). Berlin: de Gruyter. ISBN 978-3-11-017903-3. 
  8. Riedel, Erwin, ed (2007). Moderne anorganische Chemie: mit CD-ROM (3. Aufl ed.). Berlin: de Gruyter. ISBN 978-3-11-019060-1. 
  9. del Mar Conejo, María; Fernández, Rafael; Gutiérrez-Puebla, Enrique; Monge, Ángeles; Ruiz, Caridad; Carmona, Ernesto (2000-06-02). "Synthesis and X-ray Structures of [Be(C5Me4H)2 and [Be(C5Me5)2]"] (in de). Angewandte Chemie 112 (11): 2025–2027. doi:10.1002/1521-3757(20000602)112:11<2025::AID-ANGE2025>3.0.CO;2-A. ISSN 0044-8249. https://onlinelibrary.wiley.com/doi/10.1002/1521-3757(20000602)112:113.0.CO;2-A. 
  10. Xie, Yaoming; Schaefer, Henry F.; Jemmis, Eluvathingal D. (2005). "Characteristics of novel sandwiched beryllium, magnesium, and calcium dimers: C5H5BeBeC5H5, C5H5MgMgC5H5, and C5H5CaCaC5H5". Chemical Physics Letters 402 (4-6): 414–421. doi:10.1016/j.cplett.2004.11.106. ISSN 0009-2614.