Chemistry:Chondrodite

From HandWiki
Chondrodite
Chondrodite-225224.jpg
General
CategoryNesosilicates
Formula
(repeating unit)
Mg5(SiO4)2F2
Strunz classification9.AF.45 (10th edition)
8/B.04-20 (8th edition)
Dana classification52.3.2b.2
Crystal systemMonoclinic
Crystal classPrismatic (2/m)
(same H-M symbol)
Space groupP21/a
Identification
Formula mass351.6 g/mol
ColorYellow, orange, red or brown, rarely colorless
Crystal habitTypically anhedral masses or grains, or as plates flattened on {010}, {001} or {100}.[1]
TwinningSimple or multiple twinning common on {001}, also reported on {105} and {305}.[1]
CleavagePoor to good on (001)
FractureConchoidal to Uneven
TenacityBrittle
Mohs scale hardness6 to 6.5
|re|er}}Vitreous to Greasy
StreakGrey or Yellow
DiaphaneityTranslucent
Specific gravity3.1 to 3.26
Optical propertiesBiaxial(+)
Refractive indexnα = 1.592 - 1.643, nβ = 1.602 - 1.655, nγ = 1.619 - 1.675,
Birefringence0.027 - 0.032
PleochroismX golden yellow to orange, Y and Z light yellow to almost colorless[2]
SolubilitySoluble in HCl and H2SO4
Other characteristicsSome specimens fluoresce orange yellow under shortwave and orange under longwave UV. Not radioactive.
References[3][4][5][6][7]

Chondrodite is a nesosilicate mineral with formula (Mg,Fe)5(SiO4)2(F,OH,O)2. Although it is a fairly rare mineral, it is the most frequently encountered member of the humite group of minerals. It is formed in hydrothermal deposits from locally metamorphosed dolomite. It is also found associated with skarn and serpentinite. It was discovered in 1817 at Pargas in Finland, and named from the Greek for "granule", which is a common habit for this mineral.[8]

Formula

Mg5(SiO4)2F2 is the end member formula as given by the International Mineralogical Association,[9] molar mass 351.6 g. There is usually some OH in the F sites, however, and Fe and Ti can substitute for Mg, so the formula for the naturally occurring mineral is better written (Mg,Fe,Ti)5(SiO4)2(F,OH,O)2.[4]

Structure

The chondrodite structure is based on a slightly distorted hexagonal close packed array of anions O, OH and F with metal ions in the octahedral sites resulting in zigzag chains of M(O,OH,F)6 octahedra. Chains are staggered so that none of the independent tetrahedral sites occupied by Si has OH or F corners.[1] Half of the octahedral sites are filled by divalent cations, principally Mg, and one tenth of the tetrahedral sites are filled by Si. There are three distinct octahedra in the array: Fe is ordered in the M1 sites but not in the larger M2 and smaller M3 sites.[10] Ti is ordered in the M3 positions, which are the smallest, but Ti concentration appears never to exceed 0.5 atoms Ti per formula unit in natural specimens.[11] In the humite series Mg2+ is replaced by Fe2+, Mn2+, Ca2+ and Zn2+ in that order of abundance, though Mg2+ always predominates.[1]

Unit cell

Space Group: P21/b
Unit Cell Parameters:
Synthetic F end member a=7.80 Å, b=4.75 Å, c=10.27 Å, beta=109.2o.
Synthetic OH end member a=7.914 Å, b=4.752 Å, c=10.350 Å, beta=108.71o.
Natural chondrodite has a=7.867 to 7.905 Å, b=4.727 to 4.730 Å, c=10.255 to 10.318 Å, beta=109.0o to 109.33o. Z=2.

Color

Chondrodite with magnetite, Tilly Foster mine, Brewster, New York, USA

Chondrodite is yellow, orange, red or brown, or rarely colorless, but zoning of different color intensity is common, and intergrown plates of chondrodite, humite, clinohumite, forsterite and monticellite have been reported.[1]

Optical properties

Chondrodite is biaxial(+), with refractive indices variously reported as nα = 1.592 - 1.643, nβ = 1.602 - 1.655, nγ = 1.619 - 1.675, birefringence = 0.025 - 0.037, and 2V measured as 64° to 90°, calculated: 76° to 78°. Refractive indices tend to increase from norbergite to clinohumite in the humite group. They also increase with Fe2+ and Ti4+ and with (OH) substituting for F.[1] Dispersion: r > v.

Environment

Chondrodite is found largely in metamorphic contact zones between carbonate rocks and acidic or alkaline intrusions where fluorine has been introduced by metasomatic processes. It is formed by the hydration of olivine, (Mg,Fe2+)2SiO4, and is stable over a range of temperatures and pressures that include those existing in a portion of the uppermost mantle.[12]

Titanian chondrodite has been found as inclusions in olivine in serpentinite in West Greenland, where it is associated with clinohumite, olivine, magnesite, magnetite and Ni-Co-Pb sulfides in a matrix of antigorite.[13][14]

See also

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Phillips, W R and Griffen, D T (1981) Optical Mineralogy, pages 142 to 144
  2. European Journal of Mineralogy (2002) 14: 1027-1032
  3. Mineralienatlas
  4. 4.0 4.1 Gaines et al (1997) Dana's New Mineralogy Eighth Edition, Wiley
  5. http://www.mindat.org/min-1027.html Mindat
  6. "Chondrodite Mineral Data". http://webmineral.com/data/Chondrodite.shtml. 
  7. http://rruff.geo.arizona.edu/doclib/hom/chondrodite.pdf
  8. Hintze, C. (31 December 1897). "Humitgruppe". Silicate und Titanate: 370–406. doi:10.1515/9783112361047-011. ISBN 9783112361047. "The usually granular occurrence in the limestone of Pargas in Finland was described by D'OHSSON (Vet. Akad. Handl. Stockh. 1817, 206) after χονδρος "granule" as chondrodite". 
  9. "IMA Mineral List with Database of Mineral Properties". http://rruff.info/ima. 
  10. American Mineralogist (1970): 55: 1182-1194
  11. American Mineralogist (1979) 64:1027
  12. Physics and Chemistry of Minerals (1999) 26: 297-303
  13. [1]
  14. Friend, C.R.L.; Nutman, A.P. (2011). "Dunites from Isua, Greenland: A ca. 3720 Ma window into subcrustal metasomatism of depleted mantle". Geology 39 (7): 663–666. doi:10.1130/G31904.1. Bibcode2011Geo....39..663F. http://geology.gsapubs.org/content/39/7/663.short.