Chemistry:Enterocin

From HandWiki
Enterocin
Enterocin.png
Names
IUPAC name
(10S)-2-benzoyl-1,3,8,10-tetrahydroxy-9-(4-methoxy-6-oxopyran-2-yl)-5-oxatricyclo[4.3.1.03,8]decan-4-one
Other names
Vulgamycin
Identifiers
3D model (JSmol)
ChemSpider
Properties
C22H20O10
Molar mass 444.392 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Enterocin and its derivatives are bacteriocins synthesized by the lactic acid bacteria, Enterococcus. This class of polyketide antibiotics are effective against foodborne pathogens including L. monocytogenes, Listeria, and Bacillus.[1] Due to its proteolytic degradability in the gastrointestinal tract, enterocin is used for controlling foodborne pathogens via human consumption.[2]

History

Enterocin was discovered from soil and marine Streptomyces[3] strains as well as from marine ascidians of Didemnum[4] and it has also been found in a mangrove strains Streptomyces qinglanensis and Salinispora pacifica.[5]

Total synthesis

The total synthesis of enterocin has been reported.[6]

Biosynthesis

Enterocin has a caged, tricyclic, nonaromatic core and its formation undergoes a flavoenzyme (EncM) catalyzed Favorskii-like rearrangement of a poly(beta-carbonyl).[7] Studies done on enterocin have shown that it is biosynthesized from a type II polyketide synthase (PKS) pathway, starting with a structure derived from phenylalanine or activation of benzoic acid followed by the EncM catalyzed rearrangement.

Proposed biosynthetic pathway of enterocin.[8]

The enzyme EncN catalyzes the ATP-dependent transfer of the benzoate to EncC, the acyl carrier protein. EncC transfers the aromatic unit to EncA-EncB, the ketosynthase in order for malonation via FabD, the malonyl-CoA:ACP transacylase. A Claisen condensation occurs between the benzoyl and malonyl groups and occurs six more times followed by reaction with EncD, a ketoreductase; the intermediate undergoes the EncM catalyzed oxidative rearrangement to form the enterocin tricyclic core. Further reaction with O-methyltransferase, EncK and cytochrome P450 hydroxylase, EncR yields enterocin.[9]

References

  1. "Enterocins in food preservation". International Journal of Food Microbiology 141 (1–2): 1–10. June 2010. doi:10.1016/j.ijfoodmicro.2010.03.005. PMID 20399522. 
  2. "Fresh-Cut Fruits: Microbial Degradation and Preservation". Microbial Contamination and Food Degradation. 2018-01-01. pp. 149–176. doi:10.1016/B978-0-12-811515-2.00006-8. ISBN 978-0-12-811515-2. 
  3. "Enterocin, a new antibiotic taxonomy, isolation and characterization". The Journal of Antibiotics 29 (3): 227–35. March 1976. doi:10.7164/antibiotics.29.227. PMID 770404. 
  4. "Isolation of Microbial Antibiotics from a Marine Ascidian of the GenusDidemnum". The Journal of Organic Chemistry 61 (4): 1543–1546. 1996. doi:10.1021/jo951794g. ISSN 0022-3263. https://pubs.acs.org/doi/pdf/10.1021/jo951794g. 
  5. "Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin". Journal of Natural Products 78 (3): 539–42. March 2015. doi:10.1021/np500664q. PMID 25382643. 
  6. "Toward (-)-Enterocin: An Improved Cuprate Barbier Protocol To Overcome Strain and Sterical Hindrance". Organic Letters 20 (7): 1841–1844. April 2018. doi:10.1021/acs.orglett.8b00353. PMID 29553746. 
  7. "Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement". Nature 503 (7477): 552–556. November 2013. doi:10.1038/nature12643. PMID 24162851. Bibcode2013Natur.503..552T. 
  8. "Type II PKS". Comprehensive Natural Products II. 2010-01-01. pp. 227–303. doi:10.1016/B978-008045382-8.00703-6. ISBN 9780080453828. 
  9. "In vitro biosynthesis of unnatural enterocin and wailupemycin polyketides". Journal of Natural Products 72 (3): 469–72. March 2009. doi:10.1021/np800598t. PMID 19215142.