Chemistry:Glycineamide ribonucleotide

From HandWiki
Glycineamide ribonucleotide
Glycineamide ribonucleotide.svg
Names
IUPAC name
(1R)-1,4-Anhydro-1-glycinamido-D-ribitol 5-(dihydrogen phosphate)
Systematic IUPAC name
[(2R,3S,4R,5R)-5-(2-Aminoacetamido)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate
Other names
Glycineamide ribotide,
GAR
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
UNII
Properties
C7H15N2O8P
Molar mass 286.177 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Glycineamide ribonucleotide (or GAR) is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, and hence is a building block for DNA and RNA.[1][2][3] The vitamins thiamine[4] and cobalamin[5] also contain fragments derived from GAR.[6]

Phosphoribosylamine (PRA)

GAR is the product of the enzyme phosphoribosylamine—glycine ligase acting on phosphoribosylamine (PRA) to combine it with glycine in a process driven by ATP. The reaction, EC 6.3.4.13 forms an amide bond:[7]

PRA + glycine + ATP → GAR + ADP + Pi

The biosynthesis pathway next adds a formyl group from 10-formyltetrahydrofolate to GAR, catalysed by phosphoribosylglycinamide formyltransferase in reaction EC 2.1.2.2 and producing formylglycinamide ribotide (FGAR):[7]

GAR + 10-formyltetrahydrofolate → FGAR + tetrahydrofolate

See also

References

  1. R. Caspi (2009-01-13). "Pathway: 5-aminoimidazole ribonucleotide biosynthesis I". MetaCyc Metabolic Pathway Database. https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-6121. 
  2. Zhang, Y.; Morar, M.; Ealick, S.E. (2008). "Structural biology of the purine biosynthetic pathway". Cellular and Molecular Life Sciences 65: 3699–3724. doi:10.1007/s00018-008-8295-8. PMID 18712276. 
  3. Gupta, Rani; Gupta, Namita (2021). "Nucleotide Biosynthesis and Regulation". Fundamentals of Bacterial Physiology and Metabolism. pp. 525–554. doi:10.1007/978-981-16-0723-3_19. ISBN 978-981-16-0722-6. 
  4. Chatterjee, Abhishek; Hazra, Amrita B.; Abdelwahed, Sameh; Hilmey, David G.; Begley, Tadhg P. (2010). "A "Radical Dance" in Thiamin Biosynthesis: Mechanistic Analysis of the Bacterial Hydroxymethylpyrimidine Phosphate Synthase". Angewandte Chemie International Edition 49 (46): 8653–8656. doi:10.1002/anie.201003419. PMID 20886485. 
  5. R. Caspi (2019-09-23). "Pathway: 5-hydroxybenzimidazole biosynthesis (anaerobic)". MetaCyc Metabolic Pathway Database. https://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-8097. 
  6. Mehta, Angad P.; Abdelwahed, Sameh H.; Fenwick, Michael K.; Hazra, Amrita B.; Taga, Michiko E.; Zhang, Yang; Ealick, Steven E.; Begley, Tadhg P. (2015). "Anaerobic 5-Hydroxybenzimidazole Formation from Aminoimidazole Ribotide: An Unanticipated Intersection of Thiamin and Vitamin B12 Biosynthesis". Journal of the American Chemical Society 137 (33): 10444–10447. doi:10.1021/jacs.5b03576. PMID 26237670. 
  7. 7.0 7.1 Welin, Martin; Grossmann, Jörg Günter; Flodin, Susanne; Nyman, Tomas; Stenmark, Pål; Trésaugues, Lionel; Kotenyova, Tetyana; Johansson, Ida et al. (2010). "Structural studies of tri-functional human GART". Nucleic Acids Research 38 (20): 7308–7319. doi:10.1093/nar/gkq595. PMID 20631005.