Chemistry:Carbamoyl phosphate

From HandWiki
Carbamoyl phosphate
Structural formula
Ball-and-stick model
Names
IUPAC name
(Carbamoyloxy)phosphonic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
KEGG
MeSH Carbamoyl+phosphate
UNII
Properties
CH2NO5P2−
Molar mass 141.020 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

Carbamoyl phosphate is an anion of biochemical significance. In land-dwelling animals, it is an intermediary metabolite in nitrogen disposal through the urea cycle and the synthesis of pyrimidines. Its enzymatic counterpart, carbamoyl phosphate synthetase I (CPS I), interacts with a class of molecules called sirtuins, NAD dependent protein deacetylases, and ATP to form carbamoyl phosphate. CP then enters the urea cycle in which it reacts with ornithine (a process catalyzed by the enzyme ornithine transcarbamylase) to form citrulline.

Classification

Carbamoyl phosphate is a metabolic intermediate in a pathway that involves nitrogen disposal through the urea cycle and the biosynthesis of pyrimidines.[1]

Production

It is produced from bicarbonate, ammonia (derived from amino acids), and phosphate (from ATP).[2] The synthesis is catalyzed by the enzyme carbamoyl phosphate synthetase.[2] This uses three reactions as follows:

  • HCO3 + ATP → ADP + HO–C(O)–OPO2−3 (carboxyl phosphate)
  • HO–C(O)–OPO2−3 + NH3 + OHHPO2−4 + O–C(O)NH2 + H2O
  • O–C(O)NH2 + ATP → ADP + H2NC(O)OPO2−3

Clinical significance

A defect in the CPS I enzyme, and a subsequent deficiency in the production of carbamoyl phosphate has been linked to hyperammonemia in humans.[3]

See also

References

  1. Gene Reviews. University of Washington, Seattle. 1993. 
  2. 2.0 2.1 "Protein and Amino Acid Metabolism" (in en). Essentials of Medical Biochemistry (Second ed.). San Diego: Academic Press. 2015. pp. 227–268. doi:10.1016/b978-0-12-416687-5.00015-4. ISBN 978-0-12-416687-5. 
  3. "SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle". Cell 137 (3): 560–570. May 2009. doi:10.1016/j.cell.2009.02.026. PMID 19410549. 

Further reading