Chemistry:Neodymium nickelate
Names | |
---|---|
Other names
Neodymium(III) nickelate
| |
Identifiers | |
3D model (JSmol)
|
|
| |
| |
Properties | |
NdNiO3 | |
Molar mass | 250.932 g·mol−1 |
Hazards | |
GHS pictograms | |
GHS Signal word | Danger |
H317, H350, H372 | |
P261, P280, P263, P405, P501 | |
Related compounds | |
Other anions
|
Neodymium(III) oxide Neodymium(III) acetate Neodymium(III) hydride |
Other cations
|
europium nickelate lanthanum nickelate |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
Infobox references | |
Neodymium nickelate is a nickelate of neodymium with a chemical formula NdNiO3. In this compound, the neodymium atom is in the +3 oxidation state.[citation needed]
Preparation
Neodymium nickelate can be prepared by dissolving neodymium(III) oxide and nickel(II) oxide in nitric acid, followed by heating the mixture in an oxygen atmosphere.[2]
It can also be prepared by pyrolyzing a mixture of nickel nitrate and neodymium nitrate.[2][3]
It decomposes in high temperature (950 °C) by nitrogen:[2]
- 4 NdNiO3 → 2 Nd2NiO4 + 2 NiO + O2
It can also be reduced to the monovalent nickel compound NdNiO2 by sodium hydride at 160 °C.[4]
Physical properties
Neodymium nickelate shows metal-insulator transition (MIT) under low temperature.[5][6] The temperature at which it transforms (TMIT) is 200K,[7] which is higher than praseodymium nickelate (130K) but lower than samarium nickelate (400K).[5][7][8][page needed] It transforms from antiferromagnetism to paramagnetism. It has demonstrated to be a first-order phase transition (this applies for praseodymium nickelate as well).[5] The temperature (TN) can be changed by varying the NiO6 octahedral distortion.[5][6] It is the only lathanide nickelate to have the same TMIT as TN.[5]
Uses
In a 2010 study, it was found that neodymium nickelate as an anode material provided 1.7 times the current density of typical LSM anodes when integrated into a commercial SOEC and operated at 700 °C, and approximately 4 times the current density when operated at 800 °C. The increased performance is postulated to be due to higher "overstoichiometry" of oxygen in the neodymium nickelate, making it a successful conductor of both ions and electrons.[9]
Neodymium nickelate can also be used in electrocatalysts, synapse transistors, photovoltaics, memory resistors, biosensors, and electric-field sensors.[5]
References
- ↑ "Safety Data Sheet Neodymium Nickel Oxide". LTS Research Laboratories, Inc.. 13 July 2015. https://www.ltschem.com/msds/NdNiO3.pdf.
- ↑ 2.0 2.1 2.2 Vassiliou, John K.; Hornbostel, Marc; Ziebarth, Robin; Disalvo, F.J. (1989). "Synthesis and properties of NdNiO3 prepared by low-temperature methods". Journal of Solid State Chemistry 81 (2): 208–216. doi:10.1016/0022-4596(89)90008-x. ISSN 0022-4596. Bibcode: 1989JSSCh..81..208V.
- ↑ Escote, M.T.; da Silva, A.M.L.; Matos, J.R.; Jardim, R.F. (May 2000). "General Properties of Polycrystalline LnNiO3 (Ln=Pr, Nd, Sm) Compounds Prepared through Different Precursors" (in en). Journal of Solid State Chemistry 151 (2): 298–307. doi:10.1006/jssc.2000.8657. Bibcode: 2000JSSCh.151..298E.
- ↑ M.A. Hayward, M.J. Rosseinsky (June 2003). "Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride" (in en). Solid State Sciences 5 (6): 839–850. doi:10.1016/S1293-2558(03)00111-0. Bibcode: 2003SSSci...5..839H.
- ↑ 5.0 5.1 5.2 5.3 5.4 5.5 Yang, Hongwei; Wen, Zhiwei; Shu, Jun; Cui, Yajing; Chen, Yongliang; Zhao, Yong (2021). "Structural, electrical, and magnetic properties of bulk Nd1–xSrxNiO3 (x=0–0.3)". Solid State Communications 336: 114420. doi:10.1016/j.ssc.2021.114420. ISSN 0038-1098. Bibcode: 2021SSCom.33614420Y.
- ↑ 6.0 6.1 Roy, Subir; Katoch, Rajesh; Gangineni, R.B.; Angappane, S. (2021). "Investigation of metal-insulator transition temperature and magnetic properties of NdNiO3 nanoparticles". Journal of Solid State Chemistry 294: 121865. doi:10.1016/j.jssc.2020.121865. ISSN 0022-4596. Bibcode: 2021JSSCh.29421865R.
- ↑ 7.0 7.1 Lafez, P.; Ruello, P.; Edely, M. (2008). "Electrical and Infrared Properties of RF Sputtering of Rare Earth Nickelate (RNiO3) Thin Films with Metal Insulator-Transitions". in Lamont, Paul W. (in en). Leading-Edge Materials Science Research. Nova Publishers. pp. 277–310. ISBN 9781600217982. https://books.google.com/books?id=3-3FL5ii01YC&pg=PA277. Retrieved 21 April 2016.
- ↑ Jorgensen, Finn (1996). The Complete Handbook of Magnetic Recording. McGraw-Hill.
- ↑ Chauveau, F.; Mougin, J.; Bassat, J.M.; Mauvy, F.; Grenier, J.C. (2010). "A new anode material for solid oxide electrolyser: The neodymium nickelate Nd2NiO4+δ". Journal of Power Sources 195 (3): 744–749. doi:10.1016/j.jpowsour.2009.08.003. ISSN 0378-7753. Bibcode: 2010JPS...195..744C.
Original source: https://en.wikipedia.org/wiki/Neodymium nickelate.
Read more |