Chern–Simons form

From HandWiki
Short description: Secondary characteristic classes of 3-manifolds

In mathematics, the Chern–Simons forms are certain secondary characteristic classes.[1] The theory is named for Shiing-Shen Chern and James Harris Simons, co-authors of a 1974 paper entitled "Characteristic Forms and Geometric Invariants," from which the theory arose.[2]

Definition

Given a manifold and a Lie algebra valued 1-form [math]\displaystyle{ \mathbf{A} }[/math] over it, we can define a family of p-forms:[3]

In one dimension, the Chern–Simons 1-form is given by

[math]\displaystyle{ \operatorname{Tr} [ \mathbf{A} ]. }[/math]

In three dimensions, the Chern–Simons 3-form is given by

[math]\displaystyle{ \operatorname{Tr} \left[ \mathbf{F} \wedge \mathbf{A}-\frac{1}{3} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \right] = \operatorname{Tr} \left[ d\mathbf{A} \wedge \mathbf{A} + \frac{2}{3} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A}\right]. }[/math]

In five dimensions, the Chern–Simons 5-form is given by

[math]\displaystyle{ \begin{align} & \operatorname{Tr} \left[ \mathbf{F}\wedge\mathbf{F} \wedge \mathbf{A}-\frac{1}{2} \mathbf{F} \wedge\mathbf{A}\wedge\mathbf{A}\wedge\mathbf{A} +\frac{1}{10} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge\mathbf{A} \right] \\[6pt] = {} & \operatorname{Tr} \left[ d\mathbf{A}\wedge d\mathbf{A} \wedge \mathbf{A} + \frac{3}{2} d\mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} +\frac{3}{5} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A}\wedge\mathbf{A}\wedge\mathbf{A} \right] \end{align} }[/math]

where the curvature F is defined as

[math]\displaystyle{ \mathbf{F} = d\mathbf{A}+\mathbf{A}\wedge\mathbf{A}. }[/math]

The general Chern–Simons form [math]\displaystyle{ \omega_{2k-1} }[/math] is defined in such a way that

[math]\displaystyle{ d\omega_{2k-1}= \operatorname{Tr}(F^k), }[/math]

where the wedge product is used to define Fk. The right-hand side of this equation is proportional to the k-th Chern character of the connection [math]\displaystyle{ \mathbf{A} }[/math].

In general, the Chern–Simons p-form is defined for any odd p.[4]

Application to physics

In 1978, Albert Schwarz formulated Chern–Simons theory, early topological quantum field theory, using Chern-Simons forms.[5]

In the gauge theory, the integral of Chern-Simons form is a global geometric invariant, and is typically gauge invariant modulo addition of an integer.

See also

References

Further reading