Discrete spectrum (mathematics)

From HandWiki

In mathematics, specifically in spectral theory, a discrete spectrum of a closed linear operator is defined as the set of isolated points of its spectrum such that the rank of the corresponding Riesz projector is finite.

Definition

A point [math]\displaystyle{ \lambda\in\C }[/math] in the spectrum [math]\displaystyle{ \sigma(A) }[/math] of a closed linear operator [math]\displaystyle{ A:\,\mathfrak{B}\to\mathfrak{B} }[/math] in the Banach space [math]\displaystyle{ \mathfrak{B} }[/math] with domain [math]\displaystyle{ \mathfrak{D}(A)\subset\mathfrak{B} }[/math] is said to belong to discrete spectrum [math]\displaystyle{ \sigma_{\mathrm{disc}}(A) }[/math] of [math]\displaystyle{ A }[/math] if the following two conditions are satisfied:[1]

  1. [math]\displaystyle{ \lambda }[/math] is an isolated point in [math]\displaystyle{ \sigma(A) }[/math];
  2. The rank of the corresponding Riesz projector [math]\displaystyle{ P_\lambda=\frac{-1}{2\pi\mathrm{i}}\oint_\Gamma(A-z I_{\mathfrak{B}})^{-1}\,dz }[/math] is finite.

Here [math]\displaystyle{ I_{\mathfrak{B}} }[/math] is the identity operator in the Banach space [math]\displaystyle{ \mathfrak{B} }[/math] and [math]\displaystyle{ \Gamma\subset\C }[/math] is a smooth simple closed counterclockwise-oriented curve bounding an open region [math]\displaystyle{ \Omega\subset\C }[/math] such that [math]\displaystyle{ \lambda }[/math] is the only point of the spectrum of [math]\displaystyle{ A }[/math] in the closure of [math]\displaystyle{ \Omega }[/math]; that is, [math]\displaystyle{ \sigma(A)\cap\overline{\Omega}=\{\lambda\}. }[/math]

Relation to normal eigenvalues

The discrete spectrum [math]\displaystyle{ \sigma_{\mathrm{disc}}(A) }[/math] coincides with the set of normal eigenvalues of [math]\displaystyle{ A }[/math]:

[math]\displaystyle{ \sigma_{\mathrm{disc}}(A)=\{\mbox{normal eigenvalues of }A\}. }[/math][2][3][4]

Relation to isolated eigenvalues of finite algebraic multiplicity

In general, the rank of the Riesz projector can be larger than the dimension of the root lineal [math]\displaystyle{ \mathfrak{L}_\lambda }[/math] of the corresponding eigenvalue, and in particular it is possible to have [math]\displaystyle{ \mathrm{dim}\,\mathfrak{L}_\lambda\lt \infty }[/math], [math]\displaystyle{ \mathrm{rank}\,P_\lambda=\infty }[/math]. So, there is the following inclusion:

[math]\displaystyle{ \sigma_{\mathrm{disc}}(A)\subset\{\mbox{isolated points of the spectrum of }A\mbox{ with finite algebraic multiplicity}\}. }[/math]

In particular, for a quasinilpotent operator

[math]\displaystyle{ Q:\,l^2(\N)\to l^2(\N),\qquad Q:\,(a_1,a_2,a_3,\dots)\mapsto (0,a_1/2,a_2/2^2,a_3/2^3,\dots), }[/math]

one has [math]\displaystyle{ \mathfrak{L}_\lambda(Q)=\{0\} }[/math], [math]\displaystyle{ \mathrm{rank}\,P_\lambda=\infty }[/math], [math]\displaystyle{ \sigma(Q)=\{0\} }[/math], [math]\displaystyle{ \sigma_{\mathrm{disc}}(Q)=\emptyset }[/math].

Relation to the point spectrum

The discrete spectrum [math]\displaystyle{ \sigma_{\mathrm{disc}}(A) }[/math] of an operator [math]\displaystyle{ A }[/math] is not to be confused with the point spectrum [math]\displaystyle{ \sigma_{\mathrm{p}}(A) }[/math], which is defined as the set of eigenvalues of [math]\displaystyle{ A }[/math]. While each point of the discrete spectrum belongs to the point spectrum,

[math]\displaystyle{ \sigma_{\mathrm{disc}}(A)\subset\sigma_{\mathrm{p}}(A), }[/math]

the converse is not necessarily true: the point spectrum does not necessarily consist of isolated points of the spectrum, as one can see from the example of the left shift operator, [math]\displaystyle{ L:\,l^2(\N)\to l^2(\N), \quad L:\,(a_1,a_2,a_3,\dots)\mapsto (a_2,a_3,a_4,\dots). }[/math] For this operator, the point spectrum is the unit disc of the complex plane, the spectrum is the closure of the unit disc, while the discrete spectrum is empty:

[math]\displaystyle{ \sigma_{\mathrm{p}}(L)=\mathbb{D}_1, \qquad \sigma(L)=\overline{\mathbb{D}_1}; \qquad \sigma_{\mathrm{disc}}(L)=\emptyset. }[/math]

See also

References

  1. Reed, M.; Simon, B. (1978). Methods of modern mathematical physics, vol. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York. 
  2. Gohberg, I. C; Kreĭn, M. G. (1960). "Fundamental aspects of defect numbers, root numbers and indexes of linear operators". American Mathematical Society Translations 13: 185–264. http://mi.mathnet.ru/umn7581. 
  3. Gohberg, I. C; Kreĭn, M. G. (1969). Introduction to the theory of linear nonselfadjoint operators. American Mathematical Society, Providence, R.I.. http://gen.lib.rus.ec/book/index.php?md5=9CE2F03854312C3E29ED684CD84D8CA3. 
  4. Boussaid, N.; Comech, A. (2019). Nonlinear Dirac equation. Spectral stability of solitary waves. American Mathematical Society, Providence, R.I.. ISBN 978-1-4704-4395-5. https://bookstore.ams.org/surv-244.