Fundamental theorem of Hilbert spaces

From HandWiki
Short description: None

In mathematics, specifically in functional analysis and Hilbert space theory, the fundamental theorem of Hilbert spaces gives a necessarily and sufficient condition for a Hausdorff pre-Hilbert space to be a Hilbert space in terms of the canonical isometry of a pre-Hilbert space into its anti-dual.

Preliminaries

Antilinear functionals and the anti-dual

Suppose that H is a topological vector space (TVS). A function f : H[math]\displaystyle{ \mathbb{C} }[/math] is called semilinear or antilinear[1] if for all x, yH and all scalars c ,

The vector space of all continuous antilinear functions on H is called the anti-dual space or complex conjugate dual space of H and is denoted by [math]\displaystyle{ \overline{H}^{\prime} }[/math] (in contrast, the continuous dual space of H is denoted by [math]\displaystyle{ H^{\prime} }[/math]), which we make into a normed space by endowing it with the canonical norm (defined in the same way as the canonical norm on the continuous dual space of H).[1]

Pre-Hilbert spaces and sesquilinear forms

A sesquilinear form is a map B : H × H[math]\displaystyle{ \mathbb{C} }[/math] such that for all yH, the map defined by xB(x, y) is linear, and for all xH, the map defined by yB(x, y) is antilinear.[1] Note that in Physics, the convention is that a sesquilinear form is linear in its second coordinate and antilinear in its first coordinate.

A sesquilinear form on H is called positive definite if B(x, x) > 0 for all non-0 xH; it is called non-negative if B(x, x) ≥ 0 for all xH.[1] A sesquilinear form B on H is called a Hermitian form if in addition it has the property that [math]\displaystyle{ B(x, y) = \overline{B(y, x)} }[/math] for all x, yH.[1]

Pre-Hilbert and Hilbert spaces

A pre-Hilbert space is a pair consisting of a vector space H and a non-negative sesquilinear form B on H; if in addition this sesquilinear form B is positive definite then (H, B) is called a Hausdorff pre-Hilbert space.[1] If B is non-negative then it induces a canonical seminorm on H, denoted by [math]\displaystyle{ \| \cdot \| }[/math], defined by xB(x, x)1/2, where if B is also positive definite then this map is a norm.[1] This canonical semi-norm makes every pre-Hilbert space into a seminormed space and every Hausdorff pre-Hilbert space into a normed space. The sesquilinear form B : H × H[math]\displaystyle{ \mathbb{C} }[/math] is separately uniformly continuous in each of its two arguments and hence can be extended to a separately continuous sesquilinear form on the completion of H; if H is Hausdorff then this completion is a Hilbert space.[1] A Hausdorff pre-Hilbert space that is complete is called a Hilbert space.

Canonical map into the anti-dual

Suppose (H, B) is a pre-Hilbert space. If hH, we define the canonical maps:

B(h, •) : H[math]\displaystyle{ \mathbb{C} }[/math]       where       yB(h, y),     and
B(•, h) : H[math]\displaystyle{ \mathbb{C} }[/math]       where       xB(x, h)

The canonical map[1] from H into its anti-dual [math]\displaystyle{ \overline{H}^{\prime} }[/math] is the map

[math]\displaystyle{ H \to \overline{H}^{\prime} }[/math]       defined by       xB(x, •).

If (H, B) is a pre-Hilbert space then this canonical map is linear and continuous; this map is an isometry onto a vector subspace of the anti-dual if and only if (H, B) is a Hausdorff pre-Hilbert.[1]

There is of course a canonical antilinear surjective isometry [math]\displaystyle{ H^{\prime} \to \overline{H}^{\prime} }[/math] that sends a continuous linear functional f on H to the continuous antilinear functional denoted by f and defined by xf (x).

Fundamental theorem

Fundamental theorem of Hilbert spaces:[1] Suppose that (H, B) is a Hausdorff pre-Hilbert space where B : H × H[math]\displaystyle{ \mathbb{C} }[/math] is a sesquilinear form that is linear in its first coordinate and antilinear in its second coordinate. Then the canonical linear mapping from H into the anti-dual space of H is surjective if and only if (H, B) is a Hilbert space, in which case the canonical map is a surjective isometry of H onto its anti-dual.

See also

References