History:8.2-kiloyear event

From HandWiki
Short description: Rapid global cooling around 8,200 years ago
The 8.2 kiloyear event appears as a dent in the warm Holocene period. Evolution of temperatures in the Post-Glacial period following the Last Glacial Maximum (LGM), according to Greenland ice cores.[1]
The warm Holocene period with the 8.2 kiloyear event. Central Greenland ice core reconstructed temperature up to mid-19th century.

In climatology, the 8.2-kiloyear event was a sudden decrease in global temperatures that occurred approximately 8,200 years before the present, or c. 6,200 BC, and which lasted for the next two to four centuries. It defines the start of the Northgrippian age in the Holocene epoch. The cooling was significantly less pronounced than during the Younger Dryas cold period that preceded the beginning of the Holocene. During the event, atmospheric methane concentration decreased by 80 ppb, an emission reduction of 15%, by cooling and drying at a hemispheric scale.[2]

Identification

A rapid cooling around 6200 BC was first identified by Swiss botanist Heinrich Zoller (de) in 1960, who named the event the Misox oscillation (for the Val Mesolcina).[3] It is also known as the Finse event in Norway .[4] Evidence for the 8.2 ka event has been found in speleothem records across Eurasia, the Mediterranean, South America, and southern Africa and indicates the event was globally synchronous.[5] The strongest evidence for the event comes from the North Atlantic region; the disruption in climate shows clearly in Greenland ice cores and in sedimentary and other records of the temperate and the tropical North Atlantic.[6][7][8] It is less evident in ice cores from Antarctica and in South American indices.[9][10] The effects of the sudden temperature decrease were global, however, most notably in changes in sea level.

Cooling event

The event may have been caused by a large meltwater pulse,[11] which probably resulted from the final collapse of the Laurentide Ice Sheet of northeastern North America,[12][13][14] most likely when the glacial lakes Ojibway and Agassiz suddenly drained into the North Atlantic Ocean.[15] The same type of action produced the Missoula floods that formed the Channeled Scablands of the Columbia River basin. The meltwater pulse may have affected the North Atlantic thermohaline circulation,[16][17][18] reducing northward heat transport in the Atlantic and causing significant North Atlantic cooling.[19] The Atlantic meridional overturning circulation (AMOC) weakened by 55%[13] or 62%.[19] Estimates of the cooling vary and depend somewhat on the interpretation of the proxy data, but decreases of around 1 to 5 °C (1.8 to 9.0 °F) have been reported. In Greenland, the event started at 8175 BP, and the cooling was 3.3 °C (decadal average) in less than 20 years. The coldest period lasted for about 60 years, and its total duration was about 150 years.[2] The meltwater causation hypothesis is, however, considered to be speculation[by whom?] because of inconsistencies with its onset and an unknown region of impact.[citation needed]

Researchers suggest that the discharge was probably superimposed upon a longer episode of cooler climate lasting up to 600 years, and it was merely one contributing factor to the event as a whole.[20]

Further afield from the Laurentide Ice Sheet, some tropical records report a 3 °C (5.4 °F) cooling, based on cores drilled into an ancient coral reef in Indonesia.[21] The event also caused a global CO2 decline of about 25 ppm over about 300 years.[22] However, dating and interpretation of other tropical sites are more ambiguous than the North Atlantic sites. In addition, climate modeling shows that the amount of meltwater and the pathway of meltwater are both important in perturbing the North Atlantic thermohaline circulation.[23]

The initial meltwater pulse caused between 0.5 and 4 m (1 ft 8 in and 13 ft 1 in) of sea-level rise. Based on estimates of lake volume and decaying ice cap size, values of 0.4–1.2 m (1 ft 4 in–3 ft 11 in) circulate. Based on sea-level data from the Mississippi Delta, the end of the Lake Agassiz–Ojibway (LAO) drainage occurred at 8.31 to 8.18 ka and ranges from 0.8 to 2.2 m.[24] The sea-level data from the Rhine–Meuse Delta indicate a 2–4 m (6 ft 7 in–13 ft 1 in) of near-instantaneous rise at 8.54 to 8.2 ka, in addition to 'normal' post-glacial sea-level rise.[25] Meltwater pulse sea-level rise was experienced fully at great distance from the release area. Gravity and rebound effects associated with the shifting of water masses meant that the sea-level fingerprint[colloquialism] was smaller in areas closer to the Hudson Bay. The Mississippi Delta records around 20%, Northwestern Europe 70% and Asia records 105% of the globally averaged amount.[26] The cooling of the 8.2-kiloyear event was a temporary feature, but the sea-level rise of the meltwater pulse was permanent.

In 2003, the Office of Net Assessment (ONA) at the United States Department of Defense was commissioned to produce a study on the likely and potential effects of a modern climate change.[27] The study, conducted under ONA head Andrew Marshall, modeled its prospective climate change on the 8.2 ka event, precisely because it was the middle alternative between the Younger Dryas and the milder Little Ice Age.[28]

Effects

Across much of the world, the 8.2 ka event engendered drier environmental conditions.[29] Northern Hemisphere monsoon precipitation declined by 12.4% for every °C of global mean temperature change, while Southern Hemisphere monsoon precipitation rose by 4.2%/°C.[30] The 8.2 ka event was also associated with an increase in ocean salinity and terrestrial dust flux.[31]

North Africa and Mesopotamia

Drier conditions were notable in North Africa; the area around the Charef River in eastern Morocco records an episode of extreme aridity around 8,200 BP.[32] East Africa was significantly affected by five centuries of general drought. In West Asia, especially Mesopotamia, the 8.2-kiloyear event was a 300-year aridification and cooling episode, which may have provided the natural force for Mesopotamian irrigation agriculture and surplus production, which were essential for the earliest formation of classes and urban life.[citation needed] However, changes taking place over centuries around the period are difficult to link specifically to the approximately 100-year abrupt event, as recorded most clearly in the Greenland ice cores.

In particular, in Tell Sabi Abyad, Syria, significant cultural changes are observed at c. 6200 BC; the settlement was not abandoned at the time.[33]

Madagascar

In northwestern Madagascar , the 8.2 ka event is associated with a negative δ18O excursion and calcite deposition, indicating wet, humid conditions caused by the southward migration of the ITCZ.[34] Summer monsoons in the Southern Hemisphere likely became stronger, contributing to precipitation increases.[35] Humidification was two-phased, with an 8.3 kiloyear sub-event preceding the 8.2 kiloyear sub-event by about 20 years.[36]

Europe

The sediment core records of the Fram Strait show a short-lived cooling during the 8.2 ka event superimposed on a broader interval of warm climate.[37] In western Scotland, the 8.2 ka event coincided with a dramatic reduction in the Mesolithic population.[38] In the Iberian Peninsula, the 8.2 ka event is linked to greater summer aridity that caused an increase in the frequency of fires and a consequent expansion of fire-resistant evergreen oak trees.[39]

North Asia

Lacustrine sediment records show that Western Siberia underwent humidification during the 8.2 ka event.[40]

South Asia

Carbonates from Riwasa Palaeolake show a weakening of the Indian Summer Monsoon (ISM) synchronous with the 8.2 ka event.[41] Stalagmites from Kotumsar Cave[42] and from Socotra and Oman further confirm the ISM precipitously diminished in strength.[43]

East Asia

A sediment core from Lop Nur in the Tarim Basin shows a major dry spell occurred during the 8.2 ka event.[44] The impact of the 8.2 ka event on forests in the Korean Peninsula was severe, shown by a sizeable reduction in pollen production. It took approximately 400 years for forest ecosystems to recover from the event to their state before the climatic perturbation.[45]

Southeast Asia

Evidence from the Gulf of Thailand reveals that a sea level drop occurred concordantly with the 8.2 ka event. Also detectable from palynological and sedimentological records is an increase in runoff.[46]

North America

In Greenland, the 8.2 ka event is associated with a large negative spike in ice core δ18O values.[47][48] The waters off Cape Hatteras experienced a major salinity increase.[49] Bat guano δ13C and δD values in the Grand Canyon declined.[50] Southwestern Mexico became significantly drier, evidenced by the interruption of stalagmite growth.[51] In the Gulf of Mexico, bay-head deltas back stepped as sea levels rose.[52] Mustang Island was breached and ceased to be an effective salinity barrier.[53] Gulf of Mexico δ18Oseawater values dropped by 0.8%.[54]

South America

The South American Summer Monsoon (SASM) drastically intensified during the 8.2 ka event as revealed by sediment records from Juréia Paleolagoon.[55]

See also


Notes

References

  1. Zalloua, Pierre A.; Matisoo-Smith, Elizabeth (6 January 2017). "Mapping Post-Glacial expansions: The Peopling of Southwest Asia" (in en). Scientific Reports 7: 40338. doi:10.1038/srep40338. ISSN 2045-2322. PMID 28059138. Bibcode2017NatSR...740338P. 
  2. 2.0 2.1 Kobashi, T. (2007). "Precise timing and characterization of abrupt climate change 8,200 years ago from air trapped in polar ice". Quaternary Science Reviews 26 (9–10): 1212–1222. doi:10.1016/j.quascirev.2007.01.009. Bibcode2007QSRv...26.1212K. 
  3. Zoller, Heinrich (1960). "Pollenanalytische Untersuchungen zur Vegetationsgeschichte der insubrischen Schweiz" (in de). Denkschriften der Schweizerischen Naturforschenden Gesellschaft 83: 45–156. ISSN 0366-970X. 
  4. Nesje, Atle; Dahl, Svein Olaf (2001). "The Greenland 8200 cal. yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences". Journal of Quaternary Science 16 (2): 155–166. doi:10.1002/jqs.567. Bibcode2001JQS....16..155N. 
  5. Parker, Sarah E.; Harrison, Sandy P. (22 June 2022). "The timing, duration and magnitude of the 8.2 ka event in global speleothem records". Scientific Reports 12 (1): 10542. doi:10.1038/s41598-022-14684-y. PMID 35732793. Bibcode2022NatSR..1210542P. 
  6. Alley, R. B. (1997). "Holocene climatic instability; a prominent, widespread event 8,200 yr ago". Geology 25 (6): 483–486. doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2. Bibcode1997Geo....25..483A. 
  7. Alley, Richard B.; Ágústsdóttir, Anna Maria (2005). "The 8k event: cause and consequences of a major Holocene abrupt climate change". Quaternary Science Reviews 24 (10–11): 1123–1149. doi:10.1016/j.quascirev.2004.12.004. Bibcode2005QSRv...24.1123A. https://www.sciencedirect.com/science/article/pii/S0277379105000314. Retrieved 18 September 2023. 
  8. Sarmaja-Korjonen, Kaarina; Seppa, H. (2007). "Abrupt and consistent responses of aquatic and terrestrial ecosystems to the 8200 cal. yr cold event: a lacustrine record from Lake Arapisto, Finland". The Holocene 17 (4): 457–467. doi:10.1177/0959683607077020. Bibcode2007Holoc..17..457S. 
  9. Burroughs, William J., ed (2003). Climate: Into the 21st Century. Cambridge: Cambridge University Press. ISBN 978-0-521-79202-8. https://archive.org/details/climate00will. 
  10. Ljung, K. (2007). "South Atlantic island record reveals a South Atlantic response to the 8.2kyr event". Climate of the Past 4 (1): 35–45. doi:10.5194/cp-4-35-2008. 
  11. You, Defang; Stein, Ruediger; Fahl, Kirsten; Williams, Maricel C.; Schmidt, Daniela N.; McCave, Ian Nicholas; Barker, Stephen; Schefuß, Enno et al. (17 March 2023). "Last deglacial abrupt climate changes caused by meltwater pulses in the Labrador Sea" (in en). Communications Earth & Environment 4 (1): 1–12. doi:10.1038/s43247-023-00743-3. ISSN 2662-4435. https://www.nature.com/articles/s43247-023-00743-3. Retrieved 26 December 2023. 
  12. Ellison, Christopher R. W.; Chapman, Mark R.; Hall, Ian R. (2006). "Surface and Deep Ocean Interactions During the Cold Climate Event 8200 Years Ago". Science 312 (5782): 1929–1932. doi:10.1126/science.1127213. PMID 16809535. Bibcode2006Sci...312.1929E. 
  13. 13.0 13.1 Matero, I. S. O.; Gregoire, L. J.; Ivanovic, R. F. (2017). "The 8.2 ka Cooling event caused by Laurentide Ice Saddle Collapse". Earth and Planetary Science Letters 473 (5782): 205–214. doi:10.1016/j.epsl.2017.06.011. Bibcode2017E&PSL.473..205M. https://www.sciencedirect.com/science/article/pii/S0012821X17303205. Retrieved 26 December 2023. 
  14. Ehlers, Jürgen; Gibbard, Philip L. (2004). Quaternary Glaciations – Extent and Chronology. Part II: North America. Amsterdam, The Netherlands: Elsevier. pp. 257–262. ISBN 978-0-444-51592-6. 
  15. Barber, D. C. (1999). "Forcing of the cold event 8,200 years ago by catastrophic drainage of Laurentide Lakes". Nature 400 (6742): 344–348. doi:10.1038/22504. Bibcode1999Natur.400..344B. 
  16. Kleiven, Helga (Kikki) Flesche; Kissel, Catherine; Laj, Carlo; Ninnemann, Ulysses S.; Richter, Thomas O.; Cortijo, Elsa (4 January 2008). "Reduced North Atlantic Deep Water Coeval with the Glacial Lake Agassiz Freshwater Outburst" (in en). Science 319 (5859): 60–64. doi:10.1126/science.1148924. ISSN 0036-8075. PMID 18063758. 
  17. Wiersma, A. P.; Renssen, H. (January 2006). "Model–data comparison for the 8.2kaBP event: confirmation of a forcing mechanism by catastrophic drainage of Laurentide Lakes" (in en). Quaternary Science Reviews 25 (1–2): 63–88. doi:10.1016/j.quascirev.2005.07.009. https://linkinghub.elsevier.com/retrieve/pii/S0277379105002076. Retrieved 2 September 2023. 
  18. Wanner, H.; Mercolli, L.; Grosjean, M.; Ritz, S. P. (17 October 2014). "Holocene climate variability and change; a data-based review" (in en). Journal of the Geological Society 172 (2): 254–263. doi:10.1144/jgs2013-101. ISSN 0016-7649. https://www.lyellcollection.org/doi/abs/10.1144/jgs2013-101. Retrieved 18 September 2023. 
  19. 19.0 19.1 Aguiar, Wilton; Meissner, Katrin J.; Montenegro, Alvaro; Prado, Luciana; Wainer, Ilana; Carlson, Anders E.; Mata, Mauricio M. (9 March 2021). "Magnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future Greenland melting". Scientific Reports 11 (1): 5473. doi:10.1038/s41598-021-84709-5. PMID 33750824. Bibcode2021NatSR..11.5473A. 
  20. Rohling, E. J. (2005). "Centennial-scale climate cooling with a sudden event around 8,200 years ago.". Nature 434 (7036): 975–979. doi:10.1038/nature03421. PMID 15846336. Bibcode2005Natur.434..975R. 
  21. Fagan, Brian (2004). The Long Summer: How Climate Changed Civilization. New York: Basic Books. pp. 107–108. ISBN 978-0-465-02281-6. https://archive.org/details/longsummerhowcli00faga/page/107. 
  22. Wagner, Friederike (2002). "Rapid atmospheric CO2 changes associated with the 8,200-years-B.P. cooling event". Proceedings of the National Academy of Sciences of the United States of America 99 (19): 12011–12014. doi:10.1073/pnas.182420699. PMID 12202744. Bibcode2002PNAS...9912011W. 
  23. Li, Yong-Xiang; Renssen, H.; Wiersma, A. P.; Törnqvist, T. E. (28 August 2009). "Investigating the impact of Lake Agassiz drainage routes on the 8.2 ka cold event with a climate model". Climate of the Past 5 (3): 471–480. doi:10.5194/cp-5-471-2009. ISSN 1814-9332. Bibcode2009CliPa...5..471L. 
  24. Li, Yong-Xiang; Törnqvist, Torbjörn E.; Nevitt, Johanna M.; Kohl, Barry (2012). "Synchronizing rapid sea-level rise, final LakeAgassiz drainage, and abrupt cooling 8,200 years ago". Earth and Planetary Science Letters 315-316: 41–50. doi:10.1016/j.epsl.2011.05.034. Bibcode2012E&PSL.315...41L. 
  25. Hijma, Marc P.; Cohen, Kim M. (March 2010). "Timing and magnitude of the sea-level jump preluding the 8.2 kiloyear event". Geology 38 (3): 275–278. doi:10.1130/G30439.1. Bibcode2010Geo....38..275H. 
  26. Kendall, Roblyn A.; Mitrovica, J. X.; Milne, G.A.; Törnqvist, T. E.; Li, Yong-Xiang (May 2008). "The sea-level fingerprint of the 8.2 ka climate event". Geology 36 (5): 423–426. doi:10.1130/G24550A.1. Bibcode2008Geo....36..423K. 
  27. Schwartz, Peter; Randall, Doug (October 2003). An Abrupt Climate Change Scenario and Its Implications for United States National Security (Report). https://apps.dtic.mil/sti/citations/ADA469325. 
  28. Stripp, David (February 9, 2004). "The Pentagon's Weather Nightmare". Fortune. https://money.cnn.com/magazines/fortune/fortune_archive/2004/02/09/360120/index.htm. 
  29. Pratap, Shailendra; Markonis, Yannis (31 May 2022). "The response of the hydrological cycle to temperature changes in recent and distant climatic history" (in en). Progress in Earth and Planetary Science 9 (1): 1–37. doi:10.1186/s40645-022-00489-0. ISSN 2197-4284. 
  30. He, Peng; Liu, Jian; Wang, Bin; Sun, Weiyi (15 January 2022). "Understanding global monsoon precipitation changes during the 8.2 ka event and the current warm period" (in en). Palaeogeography, Palaeoclimatology, Palaeoecology 586: 110757. doi:10.1016/j.palaeo.2021.110757. 
  31. O'Brien, S. R.; Mayewski, P. A.; Meeker, L. D.; Meese, D. A.; Twickler, M. S.; Whitlow, S. I. (22 December 1995). "Complexity of Holocene Climate as Reconstructed from a Greenland Ice Core" (in en). Science 270 (5244): 1962–1964. doi:10.1126/science.270.5244.1962. ISSN 0036-8075. https://www.science.org/doi/10.1126/science.270.5244.1962. Retrieved 11 September 2023. 
  32. Depreux, Bruno; Berger, Jean-François; Lefèvre, David; Wackenheim, Quentin; Andrieu-Ponel, Valérie; Vinai, Sylvia; Degeai, Jean-Philippe; El Harradji, Abderrahmane et al. (12 May 2022). "First fluvial archive of the 8.2 and 7.6–7.3 ka events in North Africa (Charef River, High Plateaus, NE Morocco)". Scientific Reports 12 (1): 7710. doi:10.1038/s41598-022-11353-y. PMID 35562177. Bibcode2022NatSR..12.7710D. 
  33. van der Plicht, J.; Akkermans, P. G.; Nieuwenhuyse, O.; Kaneda, A.; Russell, A. (2011). "Tell Sabi Abyad, Syria: Radiocarbon Chronology, Cultural Change, and the 8.2 ka Event". Radiocarbon 53 (2): 229–243. doi:10.1017/S0033822200056514. Bibcode2011Radcb..53..229V. https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/3458/3740. 
  34. Duan, Pengzhen; Li, Hanying; Sinha, Ashish; Voarintsoa, Ny Riavo Gilbertinie; Kathayat, Gayatri; Hu, Peng; Zhang, Haiwei; Ning, Youfeng et al. (15 September 2021). "The timing and structure of the 8.2 ka event revealed through high-resolution speleothem records from northwestern Madagascar" (in en). Quaternary Science Reviews 268: 107104. doi:10.1016/j.quascirev.2021.107104. https://linkinghub.elsevier.com/retrieve/pii/S0277379121003115. Retrieved 2 September 2023. 
  35. Voarintsoa, Ny Riavo Gilbertinie (Spring 2017). "4". Investigating stalagmites from NE Namibia and NW Madagascar as a key to better understand local paleoenvironmental changes and implications for inter-tropical convergence zone (itcz) dynamics (PhD). University of Georgia. Retrieved 2 September 2023.
  36. Voarintsoa, Ny Riavo Gilbertinie; Matero, Ilkka S.O.; Railsback, L. Bruce; Gregoire, Lauren J.; Tindall, Julia; Sime, Louise; Cheng, Hai; Edwards, R. Lawrence et al. (15 January 2019). "Investigating the 8.2 ka event in northwestern Madagascar: Insight from data–model comparisons" (in en). Quaternary Science Reviews 204: 172–186. doi:10.1016/j.quascirev.2018.11.030. https://linkinghub.elsevier.com/retrieve/pii/S027737911830355X. Retrieved 2 September 2023. 
  37. Werner, Kirstin; Spielhagen, Robert F.; Bauch, Dorothea; Hass, H. Christian; Kandiano, Evgeniya (28 March 2013). "Atlantic Water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: Multiproxy evidence for a two-phase Holocene: HOLOCENE IN EASTERN FRAM STRAIT" (in en). Paleoceanography and Paleoclimatology 28 (2): 283–295. doi:10.1002/palo.20028. http://doi.wiley.com/10.1002/palo.20028. Retrieved 2 September 2023. 
  38. Wicks, Karen; Mithen, Steven (2014). "The impact of the abrupt 8.2 ka cold event on the Mesolithic population of western Scotland: a Bayesian chronological analysis using 'activity events' as a population proxy". Journal of Archaeological Science (Elsevier BV) 45: 240–269. doi:10.1016/j.jas.2014.02.003. ISSN 0305-4403. Bibcode2014JArSc..45..240W. 
  39. Davis, Basil A. S.; Stevenson, Anthony C. (10 April 2007). "The 8.2ka event and Early–Mid Holocene forests, fires and flooding in the Central Ebro Desert, NE Spain". Quaternary Science Reviews 26 (13): 1695–1712. doi:10.1016/j.quascirev.2007.04.007. ISSN 0277-3791. https://www.sciencedirect.com/science/article/pii/S0277379107001047. Retrieved 18 September 2023. 
  40. Ryabogina, Natalia E.; Afonin, Alexey S.; Ivanov, Sergey N.; Li, Hong-Chun; Kalinin, Pavel A.; Udaltsov, Sergey N.; Nikolaenko, Svetlana A. (10 September 2019). "Holocene paleoenvironmental changes reflected in peat and lake sediment records of Western Siberia: Geochemical and plant macrofossil proxies" (in en). Quaternary International 528: 73–87. doi:10.1016/j.quaint.2019.04.006. https://linkinghub.elsevier.com/retrieve/pii/S1040618218309388. Retrieved 2 September 2023. 
  41. Dixit, Yama; Hodell, David A.; Sinha, Rajiv; Petrie, Cameron A. (1 April 2014). "Abrupt weakening of the Indian summer monsoon at 8.2 kyr B.P.". Earth and Planetary Science Letters 391: 16–23. doi:10.1016/j.epsl.2014.01.026. ISSN 0012-821X. https://www.sciencedirect.com/science/article/pii/S0012821X14000363. Retrieved 10 September 2023. 
  42. Band, Shraddha; Yadava, M. G.; Lone, Mahjoor Ahmad; Shen, Chuan-Chou; Sree, Kaushik; Ramesh, R. (20 June 2018). "High-resolution mid-Holocene Indian Summer Monsoon recorded in a stalagmite from the Kotumsar Cave, Central India" (in en). Quaternary International 479: 19–24. doi:10.1016/j.quaint.2018.01.026. https://linkinghub.elsevier.com/retrieve/pii/S1040618216312794. Retrieved 2 September 2023. 
  43. Fleitmann, Dominik; Burns, Stephen J.; Mangini, Augusto; Mudelsee, Manfred; Kramers, Jan; Villa, Igor; Neff, Ulrich; Al-Subbary, Abdulkarim A. et al. (1 January 2007). "Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra)". Quaternary Science Reviews 26 (1): 170–188. doi:10.1016/j.quascirev.2006.04.012. ISSN 0277-3791. https://www.sciencedirect.com/science/article/pii/S0277379106002265. Retrieved 10 September 2023. 
  44. Wang, Jingzhong; Jia, Hongjuan (29 September 2016). "Sediment record of environmental change at Lake Lop Nur (Xinjiang, NW China) from 13.0 to 5.6 cal ka BP" (in en). Chinese Journal of Oceanology and Limnology 35 (5): 1070–1078. doi:10.1007/s00343-017-6079-4. ISSN 0254-4059. http://link.springer.com/10.1007/s00343-017-6079-4. Retrieved 2 September 2023. 
  45. Park, Jungjae; Park, Jinheum; Yi, Sangheon; Kim, Jin Cheul; Lee, Eunmi; Choi, Jieun (25 July 2019). "Abrupt Holocene climate shifts in coastal East Asia, including the 8.2 ka, 4.2 ka, and 2.8 ka BP events, and societal responses on the Korean peninsula". Scientific Reports 9 (1): 10806. doi:10.1038/s41598-019-47264-8. PMID 31346228. Bibcode2019NatSR...910806P. 
  46. Chabangborn, Akkaneewut; Punwong, Paramita; Phountong, Karn; Nudnara, Worakamon; Yoojam, Noppadon; Sainakum, Assuma; Won-In, Krit; Sompongchaiyakul, Penjai (20 January 2020). "Environmental changes on the west coast of the Gulf of Thailand during the 8.2 ka event" (in en). Quaternary International 536: 103–113. doi:10.1016/j.quaint.2019.12.020. https://linkinghub.elsevier.com/retrieve/pii/S1040618219309450. Retrieved 2 September 2023. 
  47. Masson-Delmotte, V.; Landais, A.; Stievenard, M.; Cattani, O.; Falourd, S.; Jouzel, J.; Johnsen, S. J.; Dahl-Jensen, D. et al. (20 July 2005). "Holocene climatic changes in Greenland: Different deuterium excess signals at Greenland Ice Core Project (GRIP) and NorthGRIP: GREENLAND HOLOCENE DEUTERIUM EXCESS" (in en). Journal of Geophysical Research: Atmospheres 110 (D14): 1–13. doi:10.1029/2004JD005575. 
  48. Rasmussen, S. O.; Vinther, B. M.; Clausen, H. B.; Andersen, K. K. (1 August 2008). "Early Holocene climate oscillations recorded in three Greenland ice cores". Quaternary Science Reviews. Early Holocene climate oscillations - causes and consequences 26 (15): 1907–1914. doi:10.1016/j.quascirev.2007.06.015. ISSN 0277-3791. https://www.sciencedirect.com/science/article/pii/S0277379107001680. 
  49. Cléroux, Caroline; Debret, Maxime; Cortijo, Elsa; Duplessy, Jean-Claude; Dewilde, Fabien; Reijmer, John; Massei, Nicolas (9 February 2012). "High-resolution sea surface reconstructions off Cape Hatteras over the last 10 ka: OFF CAPE HATTERAS VARIABILITY, 10 KA" (in en). Paleoceanography and Paleoclimatology 27 (1): 1–14. doi:10.1029/2011PA002184. http://doi.wiley.com/10.1029/2011PA002184. Retrieved 10 September 2023. 
  50. Wurster, Christopher M.; Patterson, William P.; McFarlane, Donald A.; Wassenaar, Leonard I.; Hobson, Keith A.; Athfield, Nancy Beavan; Bird, Michael I. (1 September 2008). "Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2 ka events" (in en). Geology 36 (9): 683. doi:10.1130/G24938A.1. ISSN 0091-7613. https://pubs.geoscienceworld.org/geology/article/36/9/683-686/29804. Retrieved 2 September 2023. 
  51. Bernal, Juan Pablo; Lachniet, Matthew; McCulloch, Malcolm; Mortimer, Graham; Morales, Pedro; Cienfuegos, Edith (January 2011). "A speleothem record of Holocene climate variability from southwestern Mexico" (in en). Quaternary Research 75 (1): 104–113. doi:10.1016/j.yqres.2010.09.002. ISSN 0033-5894. https://www.cambridge.org/core/product/identifier/S0033589400006876/type/journal_article. Retrieved 2 September 2023. 
  52. Rodriguez, Antonio B.; Simms, Alexander R.; Anderson, John B. (December 2010). "Bay-head deltas across the northern Gulf of Mexico back step in response to the 8.2ka cooling event" (in en). Quaternary Science Reviews 29 (27–28): 3983–3993. doi:10.1016/j.quascirev.2010.10.004. https://linkinghub.elsevier.com/retrieve/pii/S0277379110003586. 
  53. Ferguson, Shannon; Warny, Sophie; Anderson, John B; Simms, Alexander R; White, Crawford (7 July 2017). "Breaching of Mustang Island in response to the 8.2 ka sea-level event and impact on Corpus Christi Bay, Gulf of Mexico: Implications for future coastal change" (in en). The Holocene 28 (1): 166–172. doi:10.1177/0959683617715697. ISSN 0959-6836. 
  54. LoDico, Jenna M.; Flower, Benjamin P.; Quinn, Terrence M. (29 September 2006). "Subcentennial-scale climatic and hydrologic variability in the Gulf of Mexico during the early Holocene: HOLOCENE CLIMATE CHANGE" (in en). Paleoceanography and Paleoclimatology 21 (3): 1–9. doi:10.1029/2005PA001243. 
  55. Sallun, Alethéa E. M.; Filho, William Sallun; Suguio, Kenitiro; Babinski, Marly; Gioia, Simone M. C. L.; Harlow, Benjamin A.; Duleba, Wania; Oliveira, Paulo E. De et al. (20 January 2017). "Geochemical evidence of the 8.2 ka event and other Holocene environmental changes recorded in paleolagoon sediments, southeastern Brazil" (in en). Quaternary Research 77 (1): 31–43. doi:10.1016/j.yqres.2011.09.007. ISSN 0033-5894. https://www.cambridge.org/core/journals/quaternary-research/article/abs/geochemical-evidence-of-the-82-ka-event-and-other-holocene-environmental-changes-recorded-in-paleolagoon-sediments-southeastern-brazil/582600716CF793DB0140C005AB8E3FF2. Retrieved 10 September 2023. 

External links

  • Acosta et al. (2018). "Climate change and peopling of the Neotropics during the Pleistocene-Holocene transition". Boletín de la Sociedad Geológica Mexicana 70 (1): 1‒19. doi:10.18268/BSGM2018v70n1a1.