Hypocontinuous bilinear map

From HandWiki

In mathematics, a hypocontinuous is a condition on bilinear maps of topological vector spaces that is weaker than continuity but stronger than separate continuity. Many important bilinear maps that are not continuous are, in fact, hypocontinuous.

Definition

If X, Y and Z are topological vector spaces then a bilinear map β:X×YZ is called hypocontinuous if the following two conditions hold:

  • for every bounded set AX the set of linear maps {β(x,)xA} is an equicontinuous subset of Hom(Y,Z), and
  • for every bounded set BY the set of linear maps {β(,y)yB} is an equicontinuous subset of Hom(X,Z).

Sufficient conditions

Theorem:[1] Let X and Y be barreled spaces and let Z be a locally convex space. Then every separately continuous bilinear map of X×Y into Z is hypocontinuous.

Examples

  • If X is a Hausdorff locally convex barreled space over the field 𝔽, then the bilinear map X×X𝔽 defined by (x,x)x,x:=x(x) is hypocontinuous.[1]

See also

References

  1. 1.0 1.1 Trèves 2006, pp. 424-426.

Bibliography