K-space (functional analysis)
In mathematics, more specifically in functional analysis, a K-space is an F-space [math]\displaystyle{ V }[/math] such that every extension of F-spaces (or twisted sum) of the form [math]\displaystyle{ 0 \rightarrow \R \rightarrow X \rightarrow V \rightarrow 0. \,\! }[/math] is equivalent to the trivial one[1] [math]\displaystyle{ 0\rightarrow \R \rightarrow \R \times V \rightarrow V \rightarrow 0. \,\! }[/math] where [math]\displaystyle{ \R }[/math] is the real line.
Examples
The [math]\displaystyle{ \ell^p }[/math] spaces for [math]\displaystyle{ 0\lt p \lt 1 }[/math] are K-spaces,[1] as are all finite dimensional Banach spaces.
N. J. Kalton and N. P. Roberts proved that the Banach space [math]\displaystyle{ \ell^1 }[/math] is not a K-space.[1]
See also
- Compactly generated space – Property of topological spaces
- Gelfand–Shilov space
References
Original source: https://en.wikipedia.org/wiki/K-space (functional analysis).
Read more |