Numerical range

From HandWiki

In the mathematical field of linear algebra and convex analysis, the numerical range or field of values of a complex [math]\displaystyle{ n \times n }[/math] matrix A is the set

[math]\displaystyle{ W(A) = \left\{\frac{\mathbf{x}^*A\mathbf{x}}{\mathbf{x}^*\mathbf{x}} \mid \mathbf{x}\in\mathbb{C}^n,\ \mathbf{x}\not=0\right\} }[/math]

where [math]\displaystyle{ \mathbf{x}^* }[/math] denotes the conjugate transpose of the vector [math]\displaystyle{ \mathbf{x} }[/math]. The numerical range includes, in particular, the diagonal entries of the matrix (obtained by choosing x equal to the unit vectors along the coordinate axes) and the eigenvalues of the matrix (obtained by choosing x equal to the eigenvectors).

In engineering, numerical ranges are used as a rough estimate of eigenvalues of A. Recently, generalizations of the numerical range are used to study quantum computing.

A related concept is the numerical radius, which is the largest absolute value of the numbers in the numerical range, i.e.

[math]\displaystyle{ r(A) = \sup \{ |\lambda| : \lambda \in W(A) \} = \sup_{\|x\|=1} |\langle Ax, x \rangle|. }[/math]

Properties

  1. The numerical range is the range of the Rayleigh quotient.
  2. (Hausdorff–Toeplitz theorem) The numerical range is convex and compact.
  3. [math]\displaystyle{ W(\alpha A+\beta I)=\alpha W(A)+\{\beta\} }[/math] for all square matrix [math]\displaystyle{ A }[/math] and complex numbers [math]\displaystyle{ \alpha }[/math] and [math]\displaystyle{ \beta }[/math]. Here [math]\displaystyle{ I }[/math] is the identity matrix.
  4. [math]\displaystyle{ W(A) }[/math] is a subset of the closed right half-plane if and only if [math]\displaystyle{ A+A^* }[/math] is positive semidefinite.
  5. The numerical range [math]\displaystyle{ W(\cdot) }[/math] is the only function on the set of square matrices that satisfies (2), (3) and (4).
  6. (Sub-additive) [math]\displaystyle{ W(A+B)\subseteq W(A)+W(B) }[/math], where the sum on the right-hand side denotes a sumset.
  7. [math]\displaystyle{ W(A) }[/math] contains all the eigenvalues of [math]\displaystyle{ A }[/math].
  8. The numerical range of a [math]\displaystyle{ 2 \times 2 }[/math] matrix is a filled ellipse.
  9. [math]\displaystyle{ W(A) }[/math] is a real line segment [math]\displaystyle{ [\alpha, \beta] }[/math] if and only if [math]\displaystyle{ A }[/math] is a Hermitian matrix with its smallest and the largest eigenvalues being [math]\displaystyle{ \alpha }[/math] and [math]\displaystyle{ \beta }[/math].
  10. If [math]\displaystyle{ A }[/math] is a normal matrix then [math]\displaystyle{ W(A) }[/math] is the convex hull of its eigenvalues.
  11. If [math]\displaystyle{ \alpha }[/math] is a sharp point on the boundary of [math]\displaystyle{ W(A) }[/math], then [math]\displaystyle{ \alpha }[/math] is a normal eigenvalue of [math]\displaystyle{ A }[/math].
  12. [math]\displaystyle{ r(\cdot) }[/math] is a norm on the space of [math]\displaystyle{ n \times n }[/math] matrices.
  13. [math]\displaystyle{ r(A) \leq \|A\| \leq 2r(A) }[/math], where [math]\displaystyle{ \|\cdot\| }[/math] denotes the operator norm.
  14. [math]\displaystyle{ r(A^n) \le r(A)^n }[/math]

Generalisations

  • C-numerical range
  • Higher-rank numerical range
  • Joint numerical range
  • Product numerical range
  • Polynomial numerical hull

See also

Bibliography