Order-4 hexagonal tiling honeycomb

From HandWiki
Order-4 hexagonal tiling honeycomb
H3 634 FC boundary.png
Perspective projection view
within Poincaré disk model
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbols {6,3,4}
{6,31,1}
t0,1{(3,6)2}
Coxeter diagrams CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel branch 11.pngCDel 6a6b.pngCDel branch.png
CDel node.pngCDel ultra.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel uaub.pngCDel nodes.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4.pngCDel node.png
CDel K6 636 11.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4g.pngCDel node g.png
Cells {6,3} Uniform tiling 63-t0.png 40px Uniform tiling 333-t012.png
Faces hexagon {6}
Edge figure square {4}
Vertex figure Order-4 hexagonal tiling honeycomb verf.png
octahedron
Dual Order-6 cubic honeycomb
Coxeter groups [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
[math]\displaystyle{ \overline{DV}_3 }[/math], [6,31,1]
[math]\displaystyle{ \widehat{VV}_3 }[/math], [(6,3)[2]]
Properties Regular, quasiregular

In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

The Schläfli symbol of the order-4 hexagonal tiling honeycomb is {6,3,4}. Since that of the hexagonal tiling is {6,3}, this honeycomb has four such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the octahedron is {3,4}, the vertex figure of this honeycomb is an octahedron. Thus, eight hexagonal tilings meet at each vertex of this honeycomb, and the six edges meeting at each vertex lie along three orthogonal axes.[1]

Images

Hyperbolic 3d order 4 hexagonal tiling.png
Perspective projection
Order-4 hexagonal tiling honeycomb cell.png
One cell, viewed from outside the Poincare sphere
H2 tiling 33i-7.png
The vertices of a t{(3,∞,3)}, CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel labelinfin.png tiling exist as a 2-hypercycle within this honeycomb
Order-4 hexagonal tiling honeycomb one cell horocycle.png
The honeycomb is analogous to the H2 order-4 apeirogonal tiling, {∞,4}, shown here with one green apeirogon outlined by its horocycle

Symmetry

Subgroup relations

The order-4 hexagonal tiling honeycomb has three reflective simplex symmetry constructions.

The half-symmetry uniform construction {6,31,1} has two types (colors) of hexagonal tilings, with Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png. A quarter-symmetry construction also exists, with four colors of hexagonal tilings: CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png.

An additional two reflective symmetries exist with non-simplectic fundamental domains: [6,3*,4], which is index 6, with Coxeter diagram CDel node.pngCDel ultra.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel uaub.pngCDel nodes.png; and [6,(3,4)*], which is index 48. The latter has a cubic fundamental domain, and an octahedral Coxeter diagram with three axial infinite branches: CDel K6 636 11.png. It can be seen as using eight colors to color the hexagonal tilings of the honeycomb.

The order-4 hexagonal tiling honeycomb contains CDel node 1.pngCDel 3.pngCDel node 1.pngCDel ultra.pngCDel node.png, which tile 2-hypercycle surfaces and are similar to the truncated infinite-order triangular tiling, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel infin.pngCDel node.png:

H2 tiling 23i-6.png

Related polytopes and honeycombs

The order-4 hexagonal tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of 11 which are paracompact.

There are fifteen uniform honeycombs in the [6,3,4] Coxeter group family, including this regular form, and its dual, the order-6 cubic honeycomb.

The order-4 hexagonal tiling honeycomb has a related alternated honeycomb, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png, with triangular tiling and octahedron cells.

It is a part of sequence of regular honeycombs of the form {6,3,p}, all of which are composed of hexagonal tiling cells:

This honeycomb is also related to the 16-cell, cubic honeycomb and order-4 dodecahedral honeycomb, all of which have octahedral vertex figures.

The aforementioned honeycombs are also quasiregular:

Rectified order-4 hexagonal tiling honeycomb

Rectified order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols r{6,3,4} or t1{6,3,4}
Coxeter diagrams CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
Cells {3,4} Uniform polyhedron-43-t2.png
r{6,3} Uniform tiling 63-t1.png
Faces triangle {3}
hexagon {6}
Vertex figure Rectified order-4 hexagonal tiling honeycomb verf.png
square prism
Coxeter groups [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
[math]\displaystyle{ \overline{BP}_3 }[/math], [4,3[3]]
[math]\displaystyle{ \overline{DV}_3 }[/math], [6,31,1]
[math]\displaystyle{ \overline{DP}_3 }[/math], [3[]×[]]
Properties Vertex-transitive, edge-transitive

The rectified order-4 hexagonal tiling honeycomb, t1{6,3,4}, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png has octahedral and trihexagonal tiling facets, with a square prism vertex figure.

H3 634 boundary 0100.png

It is similar to the 2D hyperbolic tetraapeirogonal tiling, r{∞,4}, CDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png which alternates apeirogonal and square faces:

H2 tiling 24i-2.png

Truncated order-4 hexagonal tiling honeycomb

Truncated order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t{6,3,4} or t0,1{6,3,4}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
Cells {3,4} Uniform polyhedron-43-t2.png
t{6,3} Uniform tiling 63-t01.png
Faces triangle {3}
dodecagon {12}
Vertex figure Truncated order-4 hexagonal tiling honeycomb verf.png
square pyramid
Coxeter groups [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
[math]\displaystyle{ \overline{DV}_3 }[/math], [6,31,1]
Properties Vertex-transitive

The truncated order-4 hexagonal tiling honeycomb, t0,1{6,3,4}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png has octahedron and truncated hexagonal tiling facets, with a square pyramid vertex figure.

H3 634-1100.png

It is similar to the 2D hyperbolic truncated order-4 apeirogonal tiling, t{∞,4}, CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png with apeirogonal and square faces:

H2 tiling 24i-3.png

Bitruncated order-4 hexagonal tiling honeycomb

Bitruncated order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol 2t{6,3,4} or t1,2{6,3,4}
Coxeter diagram CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
Cells t{4,3} Uniform polyhedron-43-t12.png
t{3,6} Uniform tiling 63-t12.png
Faces square {4}
hexagon {6}
Vertex figure Bitruncated order-4 hexagonal tiling honeycomb verf.png
digonal disphenoid
Coxeter groups [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
[math]\displaystyle{ \overline{BP}_3 }[/math], [4,3[3]]
[math]\displaystyle{ \overline{DV}_3 }[/math], [6,31,1]
[math]\displaystyle{ \overline{DP}_3 }[/math], [3[]×[]]
Properties Vertex-transitive

The bitruncated order-4 hexagonal tiling honeycomb, t1,2{6,3,4}, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png has truncated octahedron and hexagonal tiling cells, with a digonal disphenoid vertex figure.

H3 634-0110.png

Cantellated order-4 hexagonal tiling honeycomb

Cantellated order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol rr{6,3,4} or t0,2{6,3,4}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 11.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
Cells r{3,4} Uniform polyhedron-43-t1.png
{}x{4} 40px
rr{6,3} Uniform tiling 63-t02.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Cantellated order-4 hexagonal tiling honeycomb verf.png
wedge
Coxeter groups [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
[math]\displaystyle{ \overline{DV}_3 }[/math], [6,31,1]
Properties Vertex-transitive

The cantellated order-4 hexagonal tiling honeycomb, t0,2{6,3,4}, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png has cuboctahedron, cube, and rhombitrihexagonal tiling cells, with a wedge vertex figure.

H3 634-1010.png

Cantitruncated order-4 hexagonal tiling honeycomb

Cantitruncated order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol tr{6,3,4} or t0,1,2{6,3,4}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
Cells t{3,4} Uniform polyhedron-43-t12.png
{}x{4} 40px
tr{6,3} Uniform tiling 63-t012.png
Faces square {4}
hexagon {6}
dodecagon {12}
Vertex figure Cantitruncated order-4 hexagonal tiling honeycomb verf.png
mirrored sphenoid
Coxeter groups [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
[math]\displaystyle{ \overline{DV}_3 }[/math], [6,31,1]
Properties Vertex-transitive

The cantitruncated order-4 hexagonal tiling honeycomb, t0,1,2{6,3,4}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png has truncated octahedron, cube, and truncated trihexagonal tiling cells, with a mirrored sphenoid vertex figure.

H3 634-1110.png

Runcinated order-4 hexagonal tiling honeycomb

Runcinated order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,3{6,3,4}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel ultra.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel uaub.pngCDel nodes 11.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 6.pngCDel node 1.png
Cells {4,3} Uniform polyhedron-43-t0.png
{}x{4} 40px
{6,3} 40px
{}x{6} Hexagonal prism.png
Faces square {4}
hexagon {6}
Vertex figure Runcinated order-4 hexagonal tiling honeycomb verf.png
irregular triangular antiprism
Coxeter groups [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
Properties Vertex-transitive

The runcinated order-4 hexagonal tiling honeycomb, t0,3{6,3,4}, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png has cube, hexagonal tiling and hexagonal prism cells, with an irregular triangular antiprism vertex figure.

H3 634-1001.png

It contains the 2D hyperbolic rhombitetrahexagonal tiling, rr{4,6}, CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.png with square and hexagonal faces. The tiling also has a half symmetry construction CDel branch 11.pngCDel 2a2b-cross.pngCDel nodes 11.png.

H2 tiling 246-5.png Uniform tiling 4.4.4.6.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node h0.pngCDel 4.pngCDel node 1.png = CDel branch 11.pngCDel 2a2b-cross.pngCDel nodes 11.png

Runcitruncated order-4 hexagonal tiling honeycomb

Runcitruncated order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,1,3{6,3,4}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Cells rr{3,4} Uniform polyhedron-43-t02.png
{}x{4} 40px
{}x{12} 40px
t{6,3} Uniform tiling 63-t01.png
Faces triangle {3}
square {4}
dodecagon {12}
Vertex figure Runcitruncated order-4 hexagonal tiling honeycomb verf.png
isosceles-trapezoidal pyramid
Coxeter groups [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
Properties Vertex-transitive

The runcitruncated order-4 hexagonal tiling honeycomb, t0,1,3{6,3,4}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png has rhombicuboctahedron, cube, dodecagonal prism, and truncated hexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.

H3 634-1101.png

Runcicantellated order-4 hexagonal tiling honeycomb

The runcicantellated order-4 hexagonal tiling honeycomb is the same as the runcitruncated order-6 cubic honeycomb.

Omnitruncated order-4 hexagonal tiling honeycomb

Omnitruncated order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,1,2,3{6,3,4}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cells tr{4,3} Uniform polyhedron-43-t012.png
tr{6,3} 40px
{}x{12} 40px
{}x{8} Octagonal prism.png
Faces square {4}
hexagon {6}
octagon {8}
dodecagon {12}
Vertex figure Omnitruncated order-4 hexagonal tiling honeycomb verf.png
irregular tetrahedron
Coxeter groups [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
Properties Vertex-transitive

The omnitruncated order-4 hexagonal tiling honeycomb, t0,1,2,3{6,3,4}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png has truncated cuboctahedron, truncated trihexagonal tiling, dodecagonal prism, and octagonal prism cells, with an irregular tetrahedron vertex figure.

H3 634-1111.png

Alternated order-4 hexagonal tiling honeycomb

Alternated order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Semiregular honeycomb
Schläfli symbols h{6,3,4}
Coxeter diagrams CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png
Cells {3[3]} Uniform tiling 333-t1.png
{3,4} Uniform polyhedron-43-t2.svg
Faces triangle {3}
Vertex figure Uniform polyhedron-43-t12.svg
truncated octahedron
Coxeter groups [math]\displaystyle{ \overline{BP}_3 }[/math], [4,3[3]]
Properties Vertex-transitive, edge-transitive, quasiregular

The alternated order-4 hexagonal tiling honeycomb, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png, is composed of triangular tiling and octahedron cells, in a truncated octahedron vertex figure.

Cantic order-4 hexagonal tiling honeycomb

Cantic order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols h2{6,3,4}
Coxeter diagrams CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.png
Cells h2{6,3} Uniform tiling 333-t01.png
t{3,4} 40px
r{3,4} Uniform polyhedron-43-t1.svg
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Cantic order-4 hexagonal tiling honeycomb verf.png
wedge
Coxeter groups [math]\displaystyle{ \overline{BP}_3 }[/math], [4,3[3]]
Properties Vertex-transitive

The cantic order-4 hexagonal tiling honeycomb, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.png, is composed of trihexagonal tiling, truncated octahedron, and cuboctahedron cells, with a wedge vertex figure.

Runcic order-4 hexagonal tiling honeycomb

Runcic order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols h3{6,3,4}
Coxeter diagrams CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.png
Cells {3[3]} Uniform tiling 333-t1.png
rr{3,4} 40px
{4,3} 40px
{}x{3} Triangular prism.png
Faces triangle {3}
square {4}
Vertex figure Runcic order-4 hexagonal tiling honeycomb verf.png
triangular cupola
Coxeter groups [math]\displaystyle{ \overline{BP}_3 }[/math], [4,3[3]]
Properties Vertex-transitive

The runcic order-4 hexagonal tiling honeycomb, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.png, is composed of triangular tiling, rhombicuboctahedron, cube, and triangular prism cells, with a triangular cupola vertex figure.

Runcicantic order-4 hexagonal tiling honeycomb

Runcicantic order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols h2,3{6,3,4}
Coxeter diagrams CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cells h2{6,3} Uniform tiling 333-t01.png
tr{3,4} 40px
t{4,3} 40px
{}x{3} Triangular prism.png
Faces triangle {3}
square {4}
hexagon {6}
octagon {8}
Vertex figure Runcicantic order-4 hexagonal tiling honeycomb verf.png
rectangular pyramid
Coxeter groups [math]\displaystyle{ \overline{BP}_3 }[/math], [4,3[3]]
Properties Vertex-transitive

The runcicantic order-4 hexagonal tiling honeycomb, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.png, is composed of trihexagonal tiling, truncated cuboctahedron, truncated cube, and triangular prism cells, with a rectangular pyramid vertex figure.

Quarter order-4 hexagonal tiling honeycomb

Quarter order-4 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol q{6,3,4}
Coxeter diagram CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
Cells {3[3]} Uniform tiling 333-t1.png
{3,3} 40px
t{3,3} 40px
h2{6,3} Uniform tiling 333-t01.png
Faces triangle {3}
hexagon {6}
Vertex figure Paracompact honeycomb DP3 1100 verf.png
triangular cupola
Coxeter groups [math]\displaystyle{ \overline{DP}_3 }[/math], [3[]x[]]
Properties Vertex-transitive

The quarter order-4 hexagonal tiling honeycomb, q{6,3,4}, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png or CDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png, is composed of triangular tiling, trihexagonal tiling, tetrahedron, and truncated tetrahedron cells, with a triangular cupola vertex figure.

See also

  • Convex uniform honeycombs in hyperbolic space
  • Regular tessellations of hyperbolic 3-space
  • Paracompact uniform honeycombs

References

  1. Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III
  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups