Physics:List of equations in nuclear and particle physics
This article summarizes equations in the theory of nuclear physics and particle physics.
Definitions
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Number of atoms | N = Number of atoms remaining at time t N0 = Initial number of atoms at time t = 0 |
[math]\displaystyle{ N_0 = N + N_D \,\! }[/math] | dimensionless | dimensionless |
Decay rate, activity of a radioisotope | A | [math]\displaystyle{ A = \lambda N\,\! }[/math] | Bq = Hz = s−1 | [T]−1 |
Decay constant | λ | [math]\displaystyle{ \lambda = A/N \,\! }[/math] | Bq = Hz = s−1 | [T]−1 |
Half-life of a radioisotope | t1/2, T1/2 | Time taken for half the number of atoms present to decay
[math]\displaystyle{ t \rightarrow t + T_{1/2} \,\! }[/math] |
s | [T] |
Number of half-lives | n (no standard symbol) | [math]\displaystyle{ n = t / T_{1/2} \,\! }[/math] | dimensionless | dimensionless |
Radioisotope time constant, mean lifetime of an atom before decay | τ (no standard symbol) | [math]\displaystyle{ \tau = 1 / \lambda \,\! }[/math] | s | [T] |
Absorbed dose, total ionizing dose (total energy of radiation transferred to unit mass) | D can only be found experimentally | N/A | Gy = 1 J/kg (Gray) | [L]2[T]−2 |
Equivalent dose | H | [math]\displaystyle{ H = DQ \,\! }[/math]
Q = radiation quality factor (dimensionless) |
Sv = J kg−1 (Sievert) | [L]2[T]−2 |
Effective dose | E | [math]\displaystyle{ E = \sum_j H_jW_j \,\! }[/math]
Wj = weighting factors corresponding to radiosensitivities of matter (dimensionless) [math]\displaystyle{ \sum_j W_j = 1 \,\! }[/math] |
Sv = J kg−1 (Sievert) | [L]2[T]−2 |
Equations
Nuclear structure
Physical situation Nomenclature Equations Mass number - A = (Relative) atomic mass = Mass number = Sum of protons and neutrons
- N = Number of neutrons
- Z = Atomic number = Number of protons = Number of electrons
[math]\displaystyle{ A = Z+N\,\! }[/math] Mass in nuclei - M'nuc = Mass of nucleus, bound nucleons
- MΣ = Sum of masses for isolated nucleons
- mp = proton rest mass
- mn = neutron rest mass
- [math]\displaystyle{ M_\Sigma = Zm_p + Nm_n \,\! }[/math]
- [math]\displaystyle{ M_\Sigma \gt M_N \,\! }[/math]
- [math]\displaystyle{ \Delta M = M_\Sigma - M_\mathrm{nuc} \,\! }[/math]
- [math]\displaystyle{ \Delta E = \Delta M c^2\,\! }[/math]
Nuclear radius r0 ≈ 1.2 fm
[math]\displaystyle{ r=r_0A^{1/3} \,\! }[/math] hence (approximately) - nuclear volume ∝ A
- nuclear surface ∝ A2/3
Nuclear binding energy, empirical curve Dimensionless parameters to fit experiment: - EB = binding energy,
- av = nuclear volume coefficient,
- as = nuclear surface coefficient,
- ac = electrostatic interaction coefficient,
- aa = symmetry/asymmetry extent coefficient for the numbers of neutrons/protons,
[math]\displaystyle{ \begin{align} E_B = & a_v A - a_s A^{2/3} - a_c Z(Z-1)A^{-1/3} \\ & -a_a (N-Z)^2 A^{-1} + 12\delta(N,Z)A^{-1/2} \\ \end{align} }[/math] where (due to pairing of nuclei) - δ(N, Z) = +1 even N, even Z,
- δ(N, Z) = −1 odd N, odd Z,
- δ(N, Z) = 0 odd A
Nuclear decay
Physical situation Nomenclature Equations Radioactive decay - N0 = Initial number of atoms
- N = Number of atoms at time t
- λ = Decay constant
- t = Time
Statistical decay of a radionuclide: [math]\displaystyle{ \frac{\mathrm{d} N}{\mathrm{d} t} = - \lambda N }[/math]
[math]\displaystyle{ N = N_0e^{-\lambda t}\,\! }[/math]
Bateman's equations [math]\displaystyle{ c_i = \prod_{j=1, i\neq j}^D \frac{\lambda_j}{\lambda_j - \lambda_i} }[/math] [math]\displaystyle{ N_D = \frac{N_1(0)}{\lambda_D} \sum_{i=1}^D \lambda_i c_i e^{-\lambda_i t} }[/math] Radiation flux - I0 = Initial intensity/Flux of radiation
- I = Number of atoms at time t
- μ = Linear absorption coefficient
- x = Thickness of substance
[math]\displaystyle{ I = I_0e^{-\mu x}\,\! }[/math]
Nuclear scattering theory
The following apply for the nuclear reaction:
- a + b ↔ R → c
in the centre of mass frame, where a and b are the initial species about to collide, c is the final species, and R is the resonant state.
Physical situation Nomenclature Equations Breit-Wigner formula - E0 = Resonant energy
- Γ, Γab, Γc are widths of R, a + b, c respectively
- k = incoming wavenumber
- s = spin angular momenta of a and b
- J = total angular momentum of R
Cross-section: [math]\displaystyle{ \sigma(E) = \frac{\pi g}{k^2}\frac{\Gamma_{ab}\Gamma_c}{(E-E_0)^2+\Gamma^2/4} }[/math]
Spin factor:
[math]\displaystyle{ g = \frac{2J+1}{(2s_a+1)(2s_b+1)} }[/math]
Total width:
[math]\displaystyle{ \Gamma = \Gamma_{ab} + \Gamma_c }[/math]
Resonance lifetime:
[math]\displaystyle{ \tau = \hbar/\Gamma }[/math]
Born scattering - r = radial distance
- μ = Scattering angle
- A = 2 (spin-0), −1 (spin-half particles)
- Δk = change in wavevector due to scattering
- V = total interaction potential
- V = total interaction potential
Differential cross-section: [math]\displaystyle{ \frac{d\sigma}{d\Omega} = \left|\frac{2\mu}{\hbar^2}\int_0^\infty\frac{\sin(\Delta kr)}{\Delta kr}V(r)r^2dr\right|^2 }[/math]
Mott scattering - χ = reduced mass of a and b
- v = incoming velocity
Differential cross-section (for identical particles in a coulomb potential, in centre of mass frame): [math]\displaystyle{ \frac{d\sigma}{d\Omega}=\left(\frac{\alpha}{4E}\right)\left[\csc^{4}\frac{\chi}{2}+\sec^{4}\frac{\chi}{2}+\frac{A\cos\left(\frac{\alpha}{\hbar\nu}\ln\tan^{2}\frac{\chi}{2}\right)}{\sin^{2}\frac{\chi}{2}\cos\frac{\chi}{2}}\right]^{2} }[/math]
Scattering potential energy (α = constant):
[math]\displaystyle{ V = -\alpha/r }[/math]
Rutherford scattering Differential cross-section (non-identical particles in a coulomb potential): [math]\displaystyle{ \frac{d\sigma}{d\Omega}=\left(\frac{1}{n}\right)\frac{dN}{d\Omega} = \left(\frac{\alpha}{4E}\right)^2 \csc^4\frac{\chi}{2} }[/math]
Fundamental forces
These equations need to be refined such that the notation is defined as has been done for the previous sets of equations.
Name Equations Strong force [math]\displaystyle{ \begin{align} \mathcal{L}_\mathrm{QCD} & = \bar{\psi}_i\left(i \gamma^\mu (D_\mu)_{ij} - m\, \delta_{ij}\right) \psi_j - \frac{1}{4}G^a_{\mu \nu} G^{\mu \nu}_a \\ & = \bar{\psi}_i (i \gamma^\mu \partial_\mu - m )\psi_i - g G^a_\mu \bar{\psi}_i \gamma^\mu T^a_{ij} \psi_j - \frac{1}{4}G^a_{\mu \nu} G^{\mu \nu}_a \,,\\ \end{align} \,\! }[/math] Electroweak interaction :[math]\displaystyle{ \mathcal{L}_{EW} = \mathcal{L}_g + \mathcal{L}_f + \mathcal{L}_h + \mathcal{L}_y.\,\! }[/math] - [math]\displaystyle{ \mathcal{L}_g = -\frac{1}{4}W_a^{\mu\nu}W_{\mu\nu}^a - \frac{1}{4}B^{\mu\nu}B_{\mu\nu}\,\! }[/math]
- [math]\displaystyle{ \mathcal{L}_f = \overline{Q}_i iD\!\!\!\!/\; Q_i+ \overline{u}_i^c iD\!\!\!\!/\; u^c_i+ \overline{d}_i^c iD\!\!\!\!/\; d^c_i+ \overline{L}_i iD\!\!\!\!/\; L_i+ \overline{e}^c_i iD\!\!\!\!/\; e^c_i \,\! }[/math]
- [math]\displaystyle{ \mathcal{L}_h = |D_\mu h|^2 - \lambda \left(|h|^2 - \frac{v^2}{2}\right)^2\,\! }[/math]
- [math]\displaystyle{ \mathcal{L}_y = - y_{u\, ij} \epsilon^{ab} \,h_b^\dagger\, \overline{Q}_{ia} u_j^c - y_{d\, ij}\, h\, \overline{Q}_i d^c_j - y_{e\,ij} \,h\, \overline{L}_i e^c_j + h.c.\,\! }[/math]
Quantum electrodynamics [math]\displaystyle{ \mathcal{L}=\bar\psi(i\gamma^\mu D_\mu-m)\psi -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}\;,\,\! }[/math]
See also
- Defining equation (physical chemistry)
- Defining equation (physics)
- List of electromagnetism equations
- List of equations in classical mechanics
- List of equations in quantum mechanics
- List of equations in wave theory
- List of photonics equations
- List of relativistic equations
- Relativistic wave equations
Footnotes
Sources
- B. R. Martin, G.Shaw. Particle Physics (3rd ed.). Manchester Physics Series, John Wiley & Sons. ISBN 978-0-470-03294-7.
- D. McMahon (2008). Quantum Field Theory. Mc Graw Hill (USA). ISBN 978-0-07-154382-8.
- P.M. Whelan, M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1.
- G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2.
- A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4.
- R.G. Lerner, G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12–13. ISBN 978-0-07-025734-4.
- C.B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). McGraw Hill. ISBN 0-07-051400-3.
- P.A. Tipler, G. Mosca (2008). Physics for Scientists and Engineers: With Modern Physics (6th ed.). W.H. Freeman and Co. ISBN 978-1-4292-0265-7.
- J.R. Forshaw, A.G. Smith (2009). Dynamics and Relativity. Wiley. ISBN 978-0-470-01460-8.
Further reading
- L.H. Greenberg (1978). Physics with Modern Applications. Holt-Saunders International W.B. Saunders and Co. ISBN 0-7216-4247-0.
- J.B. Marion, W.F. Hornyak (1984). Principles of Physics. Holt-Saunders International Saunders College. ISBN 4-8337-0195-2.
- A. Beiser (1987). Concepts of Modern Physics (4th ed.). McGraw-Hill (International). ISBN 0-07-100144-1.
- H.D. Young, R.A. Freedman (2008). University Physics – With Modern Physics (12th ed.). Addison-Wesley (Pearson International). ISBN 0-321-50130-6.