Physics:List of equations in quantum mechanics
Part of a series on |
Quantum mechanics |
---|
[math]\displaystyle{ i \hbar \frac{\partial}{\partial t} | \psi (t) \rangle = \hat{H} | \psi (t) \rangle }[/math] |
This article summarizes equations in the theory of quantum mechanics.
Wavefunctions
A fundamental physical constant occurring in quantum mechanics is the Planck constant, h. A common abbreviation is ħ = h/2π, also known as the reduced Planck constant or Dirac constant.
Quantity (Common Name/s) | (Common) Symbol/s | Defining Equation | SI Units | Dimension |
---|---|---|---|---|
Wavefunction | ψ, Ψ | To solve from the Schrödinger equation | varies with situation and number of particles | |
Wavefunction probability density | ρ | [math]\displaystyle{ \rho = \left | \Psi \right |^2 = \Psi^* \Psi }[/math] | m−3 | [L]−3 |
Wavefunction probability current | j | Non-relativistic, no external field:
[math]\displaystyle{ \begin{align} \mathbf{j} &= \frac{-i\hbar}{2m} \left(\Psi^* \nabla \Psi - \Psi \nabla \Psi^*\right) \\ &= \frac\hbar m \operatorname{Im}\left(\Psi^*\nabla\Psi\right) = \operatorname{Re} \left(\Psi^* \frac{\hbar}{im} \nabla \Psi\right) \end{align} }[/math] star * is complex conjugate |
m−2 s−1 | [T]−1 [L]−2 |
The general form of wavefunction for a system of particles, each with position ri and z-component of spin sz i. Sums are over the discrete variable sz, integrals over continuous positions r.
For clarity and brevity, the coordinates are collected into tuples, the indices label the particles (which cannot be done physically, but is mathematically necessary). Following are general mathematical results, used in calculations.
Property or effect | Nomenclature | Equation |
---|---|---|
Wavefunction for N particles in 3d |
|
In function notation:
[math]\displaystyle{ \Psi = \Psi \left (\mathbf{r}, \mathbf{s_z}, t \right ) }[/math] in bra–ket notation: [math]\displaystyle{ |\Psi\rangle = \sum_{s_{z1}} \sum_{s_{z2}}\cdots\sum_{s_{zN}}\int_{V_1}\int_{V_2}\cdots\int_{V_N} \mathrm{d}\mathbf{r}_1\mathrm{d}\mathbf{r}_2\cdots\mathrm{d}\mathbf{r}_N \Psi |\mathbf{r}, \mathbf{s_z}\rangle }[/math] for non-interacting particles: [math]\displaystyle{ \Psi = \prod_{n=1}^N\Psi \left (\mathbf{r}_n,s_{zn}, t \right ) }[/math] |
Position-momentum Fourier transform (1 particle in 3d) |
|
[math]\displaystyle{ \begin{align} \Phi(\mathbf{p},s_z,t) & = \frac{1}{\sqrt{2\pi\hbar}^3} \int\limits_{\mathrm{all \, space}} e^{-i\mathbf{p}\cdot\mathbf{r}/\hbar} \Psi(\mathbf{r}, s_z,t)\mathrm{d}^3\mathbf{r} \\ &\upharpoonleft \downharpoonright\\ \Psi(\mathbf{r},s_z,t) & = \frac{1}{\sqrt{2\pi\hbar}^3} \int\limits_{\mathrm{all \, space}} e^{+i\mathbf{p}\cdot\mathbf{r}/\hbar} \Phi(\mathbf{p},s_z,t)\mathrm{d}^3\mathbf{p}_n \\ \end{align} }[/math] |
General probability distribution |
|
[math]\displaystyle{ P = \sum_{s_{zN}}\cdots\sum_{s_{z2}}\sum_{s_{z1}}\int_{V_N}\cdots\int_{V_2}\int_{V_1} \left | \Psi \right |^2\mathrm{d}^3\mathbf{r}_1\mathrm{d}^3\mathbf{r}_2\cdots\mathrm{d}^3\mathbf{r}_N\,\! }[/math] |
General normalization condition | [math]\displaystyle{ P = \sum_{s_{zN}}\cdots\sum_{s_{z2}}\sum_{s_{z1}}\int\limits_{\mathrm{all \, space}}\cdots\int\limits_{\mathrm{all \, space}}\;\int\limits_{\mathrm{all \, space}} \left | \Psi \right |^2\mathrm{d}^3\mathbf{r}_1\mathrm{d}^3\mathbf{r}_2\cdots\mathrm{d}^3\mathbf{r}_N = 1\,\! }[/math] |
Equations
Wave–particle duality and time evolution
Property or effect | Nomenclature | Equation |
---|---|---|
Planck–Einstein equation and de Broglie wavelength relations |
|
[math]\displaystyle{ \mathbf{P} = (E/c, \mathbf{p}) = \hbar(\omega /c ,\mathbf{k}) = \hbar \mathbf{K} }[/math] |
Schrödinger equation |
|
General time-dependent case:
[math]\displaystyle{ i\hbar\frac{\partial}{\partial t} \Psi = \hat{H}\Psi }[/math] Time-independent case: [math]\displaystyle{ \hat{H}\Psi = E\Psi }[/math] |
Heisenberg equation |
|
[math]\displaystyle{ \frac{d}{dt}\hat{A}(t)=\frac{i}{\hbar}[\hat{H},\hat{A}(t)]+\frac{\partial \hat{A}(t)}{\partial t} }[/math] |
Time evolution in Heisenberg picture (Ehrenfest theorem) |
of a particle. |
[math]\displaystyle{ \frac{d}{dt}\langle \hat{A}\rangle = \frac{1}{i\hbar}\langle [\hat{A},\hat{H}] \rangle+ \left\langle \frac{\partial \hat{A}}{\partial t}\right\rangle }[/math]
For momentum and position; [math]\displaystyle{ m\frac{d}{dt}\langle \mathbf{r}\rangle = \langle \mathbf{p} \rangle }[/math] [math]\displaystyle{ \frac{d}{dt}\langle \mathbf{p}\rangle = -\langle \nabla V \rangle }[/math] |
Non-relativistic time-independent Schrödinger equation
Summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of wavefunction solutions. Notice in the case of one spatial dimension, for one particle, the partial derivative reduces to an ordinary derivative.
One particle | N particles | |
One dimension | [math]\displaystyle{ \hat{H} = \frac{\hat{p}^2}{2m} + V(x) = -\frac{\hbar^2}{2m}\frac{d^2}{d x^2} + V(x) }[/math] | [math]\displaystyle{ \begin{align}
\hat{H} &= \sum_{n=1}^{N}\frac{\hat{p}_n^2}{2m_n} + V(x_1,x_2,\cdots x_N) \\
& = -\frac{\hbar^2}{2}\sum_{n=1}^{N}\frac{1}{m_n}\frac{\partial^2}{\partial x_n^2} + V(x_1,x_2,\cdots x_N)
\end{align} }[/math]
where the position of particle n is xn. |
[math]\displaystyle{ E\Psi = -\frac{\hbar^2}{2m}\frac{d^2}{d x^2}\Psi + V\Psi }[/math] | [math]\displaystyle{ E\Psi = -\frac{\hbar^2}{2}\sum_{n=1}^{N}\frac{1}{m_n}\frac{\partial^2}{\partial x_n^2}\Psi + V\Psi \, . }[/math] | |
[math]\displaystyle{ \Psi(x,t)=\psi(x) e^{-iEt/\hbar} \, . }[/math]
There is a further restriction — the solution must not grow at infinity, so that it has either a finite L2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum):[1] [math]\displaystyle{ \| \psi \|^2 = \int |\psi(x)|^2\, dx.\, }[/math] |
[math]\displaystyle{ \Psi = e^{-iEt/\hbar}\psi(x_1,x_2\cdots x_N) }[/math]
for non-interacting particles [math]\displaystyle{ \Psi = e^{-i{E t/\hbar}}\prod_{n=1}^N\psi(x_n) \, , \quad V(x_1,x_2,\cdots x_N) = \sum_{n=1}^N V(x_n) \, . }[/math] | |
Three dimensions | [math]\displaystyle{ \begin{align}\hat{H} & = \frac{\hat{\mathbf{p}}\cdot\hat{\mathbf{p}}}{2m} + V(\mathbf{r}) \\
& = -\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})
\end{align} }[/math]
where the position of the particle is r = (x, y, z). |
[math]\displaystyle{ \begin{align} \hat{H} & = \sum_{n=1}^{N}\frac{\hat{\mathbf{p}}_n\cdot\hat{\mathbf{p}}_n}{2m_n} + V(\mathbf{r}_1,\mathbf{r}_2,\cdots\mathbf{r}_N) \\
& = -\frac{\hbar^2}{2}\sum_{n=1}^{N}\frac{1}{m_n}\nabla_n^2 + V(\mathbf{r}_1,\mathbf{r}_2,\cdots\mathbf{r}_N)
\end{align} }[/math]
where the position of particle n is r n = (xn, yn, zn), and the Laplacian for particle n using the corresponding position coordinates is [math]\displaystyle{ \nabla_n^2=\frac{\partial^2}{{\partial x_n}^2} + \frac{\partial^2}{{\partial y_n}^2} + \frac{\partial^2}{{\partial z_n}^2} }[/math] |
[math]\displaystyle{ E\Psi = -\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi }[/math] | [math]\displaystyle{ E\Psi = -\frac{\hbar^2}{2}\sum_{n=1}^{N}\frac{1}{m_n}\nabla_n^2\Psi + V\Psi }[/math] | |
[math]\displaystyle{ \Psi = \psi(\mathbf{r}) e^{-iEt/\hbar} }[/math] | [math]\displaystyle{ \Psi = e^{-iEt/\hbar}\psi(\mathbf{r}_1,\mathbf{r}_2\cdots \mathbf{r}_N) }[/math]
for non-interacting particles [math]\displaystyle{ \Psi = e^{-i{E t/\hbar}}\prod_{n=1}^N\psi(\mathbf{r}_n) \, , \quad V(\mathbf{r}_1,\mathbf{r}_2,\cdots \mathbf{r}_N) = \sum_{n=1}^N V(\mathbf{r}_n) }[/math] |
Non-relativistic time-dependent Schrödinger equation
Again, summarized below are the various forms the Hamiltonian takes, with the corresponding Schrödinger equations and forms of solutions.
One particle | N particles | |
One dimension | [math]\displaystyle{ \hat{H} = \frac{\hat{p}^2}{2m} + V(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x,t) }[/math] | [math]\displaystyle{ \begin{align}
\hat{H} &= \sum_{n=1}^{N}\frac{\hat{p}_n^2}{2m_n} + V(x_1,x_2,\cdots x_N,t) \\
&= -\frac{\hbar^2}{2}\sum_{n=1}^{N}\frac{1}{m_n}\frac{\partial^2}{\partial x_n^2} + V(x_1,x_2,\cdots x_N,t)
\end{align}
}[/math]
where the position of particle n is xn. |
[math]\displaystyle{ i\hbar\frac{\partial}{\partial t}\Psi = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi + V\Psi }[/math] | [math]\displaystyle{ i\hbar\frac{\partial}{\partial t}\Psi = -\frac{\hbar^2}{2}\sum_{n=1}^{N}\frac{1}{m_n}\frac{\partial^2}{\partial x_n^2}\Psi + V\Psi \, . }[/math] | |
[math]\displaystyle{ \Psi = \Psi(x,t) }[/math] | [math]\displaystyle{ \Psi = \Psi(x_1,x_2\cdots x_N,t) }[/math] | |
Three dimensions | [math]\displaystyle{ \begin{align}\hat{H} & = \frac{\hat{\mathbf{p}}\cdot\hat{\mathbf{p}}}{2m} + V(\mathbf{r},t) \\ & = -\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r},t) \\ \end{align} }[/math] | [math]\displaystyle{ \begin{align} \hat{H} & = \sum_{n=1}^{N}\frac{\hat{\mathbf{p}}_n\cdot\hat{\mathbf{p}}_n}{2m_n} + V(\mathbf{r}_1,\mathbf{r}_2,\cdots\mathbf{r}_N,t) \\ & = -\frac{\hbar^2}{2}\sum_{n=1}^{N}\frac{1}{m_n}\nabla_n^2 + V(\mathbf{r}_1,\mathbf{r}_2,\cdots\mathbf{r}_N,t) \end{align} }[/math] |
[math]\displaystyle{ i\hbar\frac{\partial}{\partial t}\Psi = -\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi }[/math] | [math]\displaystyle{ i\hbar\frac{\partial}{\partial t}\Psi = -\frac{\hbar^2}{2}\sum_{n=1}^{N}\frac{1}{m_n}\nabla_n^2\Psi + V\Psi }[/math]
This last equation is in a very high dimension,[2] so the solutions are not easy to visualize. | |
[math]\displaystyle{ \Psi = \Psi(\mathbf{r},t) }[/math] | [math]\displaystyle{ \Psi = \Psi(\mathbf{r}_1,\mathbf{r}_2,\cdots\mathbf{r}_N,t) }[/math] |
Photoemission
Property/Effect | Nomenclature | Equation |
---|---|---|
Photoelectric equation |
|
[math]\displaystyle{ K_\mathrm{max} = hf - \Phi\,\! }[/math] |
Threshold frequency and Work function |
|
Can only be found by experiment.
The De Broglie relations give the relation between them: [math]\displaystyle{ \phi = hf_0\,\! }[/math] |
Photon momentum |
|
The De Broglie relations give: [math]\displaystyle{ p = hf/c = h/\lambda\,\! }[/math] |
Quantum uncertainty
Property or effect | Nomenclature | Equation |
---|---|---|
Heisenberg's uncertainty principles |
|
Position-momentum
[math]\displaystyle{ \sigma(x) \sigma(p) \ge \frac{\hbar}{2} \,\! }[/math] Energy-time [math]\displaystyle{ \sigma(E) \sigma(t) \ge \frac{\hbar}{2} \,\! }[/math] Number-phase [math]\displaystyle{ \sigma(n) \sigma(\phi) \ge \frac{\hbar}{2} \,\! }[/math] |
Dispersion of observable | A = observables (eigenvalues of operator) |
[math]\displaystyle{ \begin{align} \sigma(A)^2 & = \langle(A-\langle A \rangle)^2\rangle \\ & = \langle A^2 \rangle - \langle A \rangle^2 \end{align} }[/math] |
General uncertainty relation | A, B = observables (eigenvalues of operator) | [math]\displaystyle{ \sigma(A)\sigma(B) \geq \frac{1}{2}\langle i[\hat{A}, \hat{B}] \rangle }[/math] |
Property or effect | Equation |
---|---|
Density of states | [math]\displaystyle{ N(E) = 8\sqrt{2}\pi m^{3/2}E^{1/2}/h^3\,\! }[/math] |
Fermi–Dirac distribution (fermions) | [math]\displaystyle{ P(E_i) = \frac{g(E_i)}{e^{(E-\mu)/kT} + 1} }[/math]
where
|
Bose–Einstein distribution (bosons) | [math]\displaystyle{ P(E_i) = \frac{g(E_i)}{e^{(E_i-\mu)/kT}-1} }[/math] |
Angular momentum
Property or effect | Nomenclature | Equation |
---|---|---|
Angular momentum quantum numbers |
|
Spin: [math]\displaystyle{ \begin{align}& \Vert \mathbf{s} \Vert = \sqrt{s \, (s+1)} \, \hbar \\ & m_s \in \{-s,-s+1\cdots s-1,s\}\\ \end{align}\,\! }[/math] Orbital: [math]\displaystyle{ \begin{align}& \ell \in \{0 \cdots n-1\} \\ & m_\ell \in \{-\ell,-\ell+1\cdots \ell-1,\ell\}\\ \end{align}\,\! }[/math] Total: [math]\displaystyle{ \begin{align}& j = \ell +s \\ & m_j \in \{|\ell-s|,|\ell-s|+1 \cdots |\ell+s|-1,|\ell+s| \} \\ \end{align}\,\! }[/math] |
Angular momentum magnitudes | angular momementa:
|
Spin magnitude:
[math]\displaystyle{ |\mathbf{S}| = \hbar\sqrt{s(s+1)}\,\! }[/math] Orbital magnitude: [math]\displaystyle{ |\mathbf{L}| = \hbar\sqrt{\ell(\ell+1)}\,\! }[/math] Total magnitude: [math]\displaystyle{ \mathbf{J} = \mathbf{L} + \mathbf{S}\,\! }[/math] [math]\displaystyle{ |\mathbf{J}| = \hbar\sqrt{j(j+1)}\,\! }[/math] |
Angular momentum components | Spin:
[math]\displaystyle{ S_z = m_s \hbar\,\! }[/math] Orbital: [math]\displaystyle{ L_z = m_\ell \hbar\,\! }[/math] |
- Magnetic moments
In what follows, B is an applied external magnetic field and the quantum numbers above are used.
Property or effect | Nomenclature | Equation |
---|---|---|
orbital magnetic dipole moment |
|
[math]\displaystyle{ \boldsymbol{\mu}_\ell = -e\mathbf{L}/2m_e = g_\ell \frac{\mu_B}{\hbar} \mathbf{L}\,\! }[/math]
z-component: [math]\displaystyle{ \mu_{\ell,z} = -m_\ell\mu_B\,\! }[/math] |
spin magnetic dipole moment |
|
[math]\displaystyle{ \boldsymbol{\mu}_s = -e\mathbf{S}/m_e = g_s \frac{\mu_B}{\hbar} \mathbf{S}\,\! }[/math]
z-component: [math]\displaystyle{ \mu_{s,z} = -e S_z/m_e = g_seS_z/2m_e\,\! }[/math] |
dipole moment potential | U = potential energy of dipole in field | [math]\displaystyle{ U = -\boldsymbol{\mu}\cdot\mathbf{B} = -\mu_z B\,\! }[/math] |
The Hydrogen atom
Property or effect | Nomenclature | Equation |
---|---|---|
Energy level |
|
[math]\displaystyle{ E_n = -m e^4 / 8\varepsilon_0^2 h^2 n^2 = -13.61\,\mathrm{eV}/n^2 }[/math] |
Spectrum | λ = wavelength of emitted photon, during electronic transition from Ei to Ej | [math]\displaystyle{ \frac{1}{\lambda} = R\left(\frac{1}{n_j^2} - \frac{1}{n_i^2}\right), \, n_j\lt n_i\,\! }[/math] |
See also
- Defining equation (physical chemistry)
- List of electromagnetism equations
- List of equations in classical mechanics
- List of equations in fluid mechanics
- List of equations in gravitation
- List of equations in nuclear and particle physics
- List of equations in wave theory
- List of photonics equations
- List of relativistic equations
Footnotes
- ↑ Feynman, R.P.; Leighton, R.B.; Sand, M. (1964). "Operators". The Feynman Lectures on Physics. 3. Addison-Wesley. pp. 20–7. ISBN 0-201-02115-3.
- ↑ Shankar, R. (1994). Principles of Quantum Mechanics. Kluwer Academic/Plenum Publishers. p. 141. ISBN 978-0-306-44790-7. https://archive.org/details/principlesquantu00shan_139.
Sources
- P.M. Whelan; M.J. Hodgeson (1978). Essential Principles of Physics (2nd ed.). John Murray. ISBN 0-7195-3382-1.
- G. Woan (2010). The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2. https://archive.org/details/cambridgehandboo0000woan.
- A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4.
- R. G. Lerner; G. L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12–13. ISBN 978-0-07-025734-4.
- C. B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). McGraw Hill. ISBN 0-07-051400-3. https://archive.org/details/mcgrawhillencycl1993park.
- P. A. Tipler; G. Mosca (2008). Physics for Scientists and Engineers: With Modern Physics (6th ed.). W. H. Freeman and Co. ISBN 978-1-4292-0265-7.
- L.N. Hand; J. D. Finch (2008). Analytical Mechanics. Cambridge University Press. ISBN 978-0-521-57572-0.
- T. B. Arkill; C. J. Millar (1974). Mechanics, Vibrations and Waves. John Murray. ISBN 0-7195-2882-8.
- H.J. Pain (1983). The Physics of Vibrations and Waves (3rd ed.). John Wiley & Sons. ISBN 0-471-90182-2.
- J. R. Forshaw; A. G. Smith (2009). Dynamics and Relativity. Wiley. ISBN 978-0-470-01460-8.
- G. A. G. Bennet (1974). Electricity and Modern Physics (2nd ed.). Edward Arnold (UK). ISBN 0-7131-2459-8.
- I. S. Grant; W. R. Phillips; Manchester Physics (2008). Electromagnetism (2nd ed.). John Wiley & Sons. ISBN 978-0-471-92712-9.
- D.J. Griffiths (2007). Introduction to Electrodynamics (3rd ed.). Pearson Education, Dorling Kindersley. ISBN 978-81-7758-293-2.
Further reading
- L. H. Greenberg (1978). Physics with Modern Applications. Holt-Saunders International W. B. Saunders and Co. ISBN 0-7216-4247-0. https://archive.org/details/physicswithmoder0000gree.
- J. B. Marion; W. F. Hornyak (1984). Principles of Physics. Holt-Saunders International Saunders College. ISBN 4-8337-0195-2.
- A. Beiser (1987). Concepts of Modern Physics (4th ed.). McGraw-Hill (International). ISBN 0-07-100144-1.
- H. D. Young; R. A. Freedman (2008). University Physics – With Modern Physics (12th ed.). Addison-Wesley (Pearson International). ISBN 978-0-321-50130-1.
Original source: https://en.wikipedia.org/wiki/List of equations in quantum mechanics.
Read more |