Physics:Magnetic energy

From HandWiki
Short description: Energy from the work of a magnetic force

The potential magnetic energy of a magnet or magnetic moment 𝐦 in a magnetic field 𝐁 is defined as the mechanical work of the magnetic force on the re-alignment of the vector of the magnetic dipole moment and is equal to: Ep,m=𝐦𝐁The mechanical work takes the form of a torque N:𝐍=𝐦×𝐁=𝐫×Ep,m which will act to "realign" the magnetic dipole with the magnetic field.[1]

In an electronic circuit the energy stored in an inductor (of inductance L) when a current I flows through it is given by:Ep,m=12LI2. This expression forms the basis for superconducting magnetic energy storage. It can be derived from a time average of the product of current and voltage across an inductor.

Energy is also stored in a magnetic field itself. The energy per unit volume u in a region of free space with vacuum permeability μ0 containing magnetic field 𝐁 is: u=12B2μ0More generally, if we assume that the medium is paramagnetic or diamagnetic so that a linear constitutive equation exists that relates 𝐁 and the magnetization 𝐇 (for example 𝐇=𝐁/μ where μ is the magnetic permeability of the material), then it can be shown that the magnetic field stores an energy of E=12𝐇𝐁dV where the integral is evaluated over the entire region where the magnetic field exists.[2]

For a magnetostatic system of currents in free space, the stored energy can be found by imagining the process of linearly turning on the currents and their generated magnetic field, arriving at a total energy of:[2] E=12𝐉𝐀dV where 𝐉 is the current density field and 𝐀 is the magnetic vector potential. This is analogous to the electrostatic energy expression 12ρϕdV; note that neither of these static expressions apply in the case of time-varying charge or current distributions.[3]

References

  1. โ†‘ Griffiths, David J. (2023). Introduction to electrodynamics (Fifth ed.). New York: Cambridge University Press. ISBN 978-1-009-39773-5. 
  2. โ†‘ 2.0 2.1 Jackson, John David (1998). Classical Electrodynamics (3 ed.). New York: Wiley. pp. 212โ€“onwards. 
  3. โ†‘ "The Feynman Lectures on Physics, Volume II, Chapter 15: The vector potential". https://feynmanlectures.caltech.edu/II_15.html. 
  • Magnetic Energy, Richard Fitzpatrick Professor of Physics The University of Texas at Austin.