Physics:Timeline of crystallography

From HandWiki
Short description: None

This is a timeline of crystallography.

18th Century

  • 1723 – Moritz Anton Cappeller introduces the term ‘crystallography’.[1]
  • 1766 – Pierre-Joseph Macquer, in his Dictionnaire de Chymie, promotes mechanisms of crystallization based on the idea that crystals are composed of polyhedral molecules (primitive integrantes).[2]
  • 1772 – Jean-Baptiste L. Romé de l'Isle develops geometrical ideas on crystal structure in his Essai de Cristallographie. He also described the twinning phenomenon in crystals.[3]
  • 1781 – Abbé René Just Haüy (often termed the "Father of Modern Crystallography"[4]) discovers that crystals always cleave along crystallographic planes. Based on this observation, and the fact that the inter-facial angles in each crystal species always have the same value, Haüy concluded that crystals must be periodic and composed of regularly arranged rows of tiny polyhedra (molécules intégrantes). This theory explained why all crystal planes are related by small rational numbers (the law of rational indices).[5][6]
  • 1783 – Jean-Baptiste L. Romé de l'Isle in the second edition of his Cristallographie uses the contact goniometer to discover the law of constant interfacial angles: angles are constant and characteristic for crystals of the same chemical substance.[7]
  • 1784 – René Just Haüy publishes his Law of Decrements: a crystal is composed of molecules arranged periodically in three dimensions.[8]
  • 1795 – René Just Haüy lectures on his Law of Symmetry: “[…] the manner in which Nature creates crystals is always obeying [...] the law of the greatest possible symmetry, in the sense that oppositely situated but corresponding parts are always equal in number, arrangement, and form of their faces”.[9]

19th Century

20th Century

  • 1905 - Charles Glover Barkla discovered X-ray polarization effect.[32]
  • 1908 - Bernhard Walter and Robert Wichard Pohl observed X-ray diffraction from a slit.[33][34]
  • 1912 - Max von Laue discovers diffraction patterns from crystals in an x-ray beam.[35]
  • 1912 - Bragg diffraction, expressed through Bragg’s law, is first presented by Lawrence Bragg on 11 November 1912 to the Cambridge Philosophical Society.[36]
  • 1912 - Heinrich Baumhauer discovered and described polytypism in crystals of carborundum, or silicon carbide.[37]
  • 1913 - Lawrence Bragg publishes the first observation of x-ray diffraction by crystals.[38]
  • 1914 - Max von Laue wins the Nobel Prize in Physics "for his discovery of the diffraction of X-rays by crystals."[39]
  • 1915 - William and Lawrence Bragg share the Nobel Prize in Physics "for their services in the analysis of crystal structure by means of X-rays."[40]
  • 1916 - Peter Debye and Paul Scherrer discover powder (polycrystalline) diffraction.[41]
  • 1916 - Paul Peter Ewald predicted the Pendellösung effect, which is a foundational aspect of the dynamical diffraction theory of X rays.[42]
  • 1917 - Albert W. Hull independently discovers powder diffraction in researching the crystal structure of iron.[43]
  • 1923 - Roscoe Dickinson and Albert Raymond, and independently, H.J. Gonell and Hermann Mark, first show that an organic molecule, specifically hexamethylenetetramine, could be characterized by x-ray crystallography.[44][45]
  • 1923 - William H. Bragg and R.E. Gibbs elucidate the structure of quartz.[46]
  • 1926 - Victor Goldschmidt distinguishes between atomic and ionic radii and postulates some rules for atom substitution in crystal structures.[47]
  • 1928 - Felix Machatschki, working with Goldschmidt, shows that silicon can be replaced by aluminium in feldspar structures.[48]
  • 1928 - Kathleen Lonsdale uses x-rays to determine that the structure of benzene is a flat hexagonal ring.[49]
  • 1928 - Paul Niggli introduced reduced cells for simplifying structures using a technique now known as Niggli reduction.[50]
  • 1929 - Linus Pauling formulated a set of rules to describe the structure of complex ionic crystals.[51]
  • 1930 - Lawrence Bragg assembles the first classification of silicates, describing their structure in terms of grouping of SiO4 tetrahedra.[52]
  • 1931 - Paul Ewald and Carl Hermann published the first volume of the Strukturbericht (Structure Report),[53] which established the systematic classification of crystal structure prototypes, also known as the Strukturbericht designation.
  • 1932 - Friedrich Rinne introduced the concept of paracrystallinity for liquid crystals and amorphous materials.[54][55]
  • 1934 - Arthur Patterson introduces the Patterson function which uses diffraction intensities to determine the interatomic distances within a crystal, setting limits to the possible phase values for the reflected x-rays.[56]
  • 1934 - The first volumes in the series of International Tables for Crystallography are published.[57]
  • 1936 - Peter Debye wins the Nobel Prize in Chemistry "for his contributions to our knowledge of molecular structure through his investigations on dipole moments and on the diffraction of X-rays and electrons in gases."[58]
  • 1937 - Clinton Joseph Davisson and George Paget Thomson share the Nobel Prize in physics "for their experimental discovery of the diffraction of electrons by crystals."[59]
  • 1945 - George W. Brindley and Keith Robinson solved the crystal structure of kaolinite.[60]
  • 1946 - Foundation of the International Union of Crystallography.[61]
  • 1946 - James Batcheller Sumner shares the Nobel Prize in Chemistry "for his discovery that enzymes can be crystallized".[62]
  • 1947 - Lewis Stephen Ramsdell systematically classified the polytypes of silicon carbide, and introduced the Ramsdell notation.[63]
  • 1949 - Clifford Shull opens a new field of magnetic crystallography based on neutron diffraction.[64]
  • 1950 - Karle and Hauptman introduce useful formulae for phase determination, known as Direct Methods.[65]
  • 1951 - Bijvoet and his colleagues, using anomalous scattering, confirm Emil Fischer’s arbitrary assignment of absolute configuration, in relation to the direction of optical rotation of polarized light, was correct in practice.[66]
  • 1951 - Linus Pauling determines the structure of the α-helix and the β-sheet in polypeptide chains for which he won the 1954 Nobel prize in Chemistry.[67][68]
  • 1951 - Alexei Vasilievich Shubnikov publishes Symmetry and antisymmetry of finite figures[69][70] which opened up the field of antisymmetry in magnetic structures.
  • 1952 - David Sayre suggests that the phase problem could be more easily solved by having at least one more intensity measurement beyond those of the Bragg peaks in each dimension. This concept is understood today as oversampling.[71]
  • 1952 - Geoffrey Wilkinson and Ernst Otto Fischer determine the structure of ferrocene, the first metallic sandwich compound, for which they win the 1973 Nobel prize in Chemistry.[72][73]
  • 1953 - Arne Magnéli introduced the term homologous series to describe polytypes of transition metal oxides that exhibit crystallographic shear structures.[74]
  • 1953 - Determination of the structure of DNA by 3 British teams, for which Watson, Crick and Wilkins win the 1962 Nobel Prize in Physiology or Medicine in 1962 (Franklin’s death in 1958 made her ineligible for the award).[75][76][77]
  • 1954 - Ukichiro Nakaya's book Snow Crystals: Natural and Artificial, dedicated to the modern study of snow crystals, is published.[78]
  • 1954 - Linus Pauling wins the Nobel Prize in Chemistry "for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances", specifically the determination of the structure of the α-helix and the β-sheet in polypeptide chains.”[79]
  • 1956 - Durward W. J. Cruickshank developed the theoretical framework for anisotropic displacement parameters, also known as the thermal ellipsoid.[80]
  • 1960 - John Kendrew determines the structure of myoglobin for which he shares the 1962 Nobel Prize in Chemistry.[81]
  • 1960 - After many years of research, Max Perutz determines the structure of haemoglobin for which he shares the 1962 Nobel Prize in Chemistry.[82]
  • 1962 - Michael Rossmann and David Blow lay the foundation for the molecular replacement approach which provides phase information without requiring additional experimental effort.[83]
  • 1962 - Max Perutz and John Kendrew share the Nobel Prize for Chemistry "for their studies of the structures of globular proteins", namely haemoglobin and myoglobin respectively[84]
  • 1962 - James Watson, Francis Crick and Maurice Wilkins win the Nobel Prize in Physiology or Medicine "for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material," specifically for their determination of the structure of DNA.[85]
  • 1964 - Dorothy Hodgkin wins the Nobel Prize for Chemistry "for her determinations by X-ray techniques of the structures of important biochemical substances." The substances included penicillin and vitamin B12.[86]
  • 1967 - Hugo Rietveld invents the Rietveld refinement method for computation of crystal structures.[87]
  • 1968 - Aaron Klug and David DeRosier use electron microscopy to visualise the structure of the tail of bacteriophage T4, a common virus, thus signalling a breakthrough in macromolecular structure determination.[88]
  • 1968 - Dorothy Hodgkin, after 35 years of work, finally deciphers the structure of insulin.[89]
  • 1971 - Establishment of the Protein Data Bank(PDB). At PDB, Edgar Meyer develops the first general software tools for handling and visualizing protein structural data.[90][91]
  • 1973 - Alex Rich’s group publish the first report of a polynucleotide crystal structure - that of the yeast transfer RNA (tRNA) for phenylalanine.[92]
  • 1973 - Geoffrey Wilkinson and Ernst Fischer share the Nobel Prize in Chemistry “for their pioneering work, performed independently, on the chemistry of the organometallic, so called sandwich compounds”, specifically the structure of ferrocene.[93]
  • 1976 - William Lipscomb wins the Nobel Prize in Chemistry “for his studies on the structure of boranes illuminating problems of chemical bonding.”[94]
  • 1978 - Stephen C. Harrison provides the first high-resolution structure of a virus: tomato bushy stunt virus which is icosahedral in form.[95]
  • 1979 - The first award of the Gregori Aminoff Prize for a contribution in the field of crystallography is made by the Royal Swedish Academy of Sciences to Paul Peter Ewald.[96]
  • 1980 - Jerome Karle and Wayne Hendrickson develop multi-wavelength anomalous dispersion (MAD) a technique to facilitate the determination of the three-dimensional structure of biological macromolecules via a solution of the phase problem.[97]
  • 1982 - Aaron Klug wins the Nobel Prize in Chemistry “for his development of crystallographic electron microscopy and his structural elucidation of biologically important nucleic acid-protein complexes.”[98]
  • 1984 - Dan Shechtman discovers quasicrystals for which he receives the Nobel Prize in Chemistry in 2011. These structures have no unit cell and no periodic translational order but have long-range bond orientational order, which generates a defined diffraction pattern.[99]
  • 1984 - Aaron Klug and his colleagues provide an advance in determining the structure of protein–nucleic acid complexes when they solve the structure of the 206-kDa nucleosome core particle.[100]
  • 1985 - Jerome Karle shares the Nobel Prize in Chemistry with Herbert A. Hauptman "for their outstanding achievements in the development of direct methods for the determination of crystal structures". Karle developed the theoretical basis for multiple-wavelength anomalous diffraction (MAD).[101]
  • 1985 - Hartmut Michel and his colleagues report the first high-resolution X-ray crystal structure of an integral membrane protein when they publish the structure of a photosynthetic reaction centre. Michel, Deisenhofer and Huber share the 1988 Nobel Prize in Chemistry for this work.[102]
  • 1986 - Ernst Ruska shares the Nobel Prize in Physics "for his fundamental work in electron optics, and for the design of the first electron microscope".[103]
  • 1987 - John M. Cowley and Alexander F. Moodie share the first IUCr Ewald Prize "for their outstanding achievements in electron diffraction and microscopy. They carried out pioneering work on the dynamical scattering of electrons and the direct imaging of crystal structures and structure defects by high-resolution electron microscopy. The physical optics approach used by Cowley and Moodie takes into account many hundreds of scattered beams, and represents a far-reaching extension of the dynamical theory for X-rays, first developed by P.P. Ewald".[104]
  • 1988 - Johann Deisenhofer, Robert Huber and Hartmut Michel share the Nobel Prize in Chemistry "for the determination of the three-dimensional structure of a photosynthetic reaction centre."[105]
  • 1990 - Boris K. Vainshtein wins the second IUCr Ewald Prize "for his contributions to the development of theories and methods of structure analysis by electron and X-ray diffraction and for his applications of his theories to structural investigations of polymers, liquid crystals, peptides and proteins".[106]
  • 1991 - Georg E. Schulz and colleagues report the structure of a bacterial porin, a membrane protein with a cylindrical shape (a ‘β-barrel’).[107]
  • 1992 - The International Union of Crystallography changes the IUCr’s definition of a crystal to “any solid having an essentially discrete diffraction pattern” thus formally recognizing quasicrystals.[108]
  • 1993 - Norio Kato wins the third IUCr Ewald Prize "for his outstanding and profound contributions to the dynamical theory of X-ray diffraction of spherical waves by perfect crystals and slightly deformed (nearly perfect) crystals, for the experimental exploitation of these theories towards the characterization of the defect structure of single crystals and for his extraordinary achievements in X-ray diffraction topography".[109]
  • 1994 - Jan Pieter Abrahams et al. reported the structure of an F1-ATPase which uses the proton-motive force across the inner mitochondrial membrane to facilitate the synthesis of adenosine triphosphate (ATP).[110]
  • 1994 - Bertram Brockhouse and Clifford Shull share the Nobel Prize in Physics "for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter". Specifically, Brockhouse "for the development of neutron spectroscopy" and Shull "for the development of the neutron diffraction technique."[111]
  • 1996 - Michael Rossmann wins the fourth IUCr Ewald Prize "for his work on molecular replacement and the use of non-crystallographic symmetry in the determination of macromolecular structure and for his research on the structure of viruses, which is foremost among the triumphs of crystallography".[112]
  • 1997 - The X-ray crystal structure of bacteriorhodopsin was the first time the lipidic cubic phase (LCP) was used to facilitate the crystallization of a membrane protein; LCP has since been used to obtain the structures of many unique membrane proteins, including G protein-coupled receptors (GPCRs).[113]
  • 1997 - Paul D. Boyer and John E. Walker share one half of the Nobel Prize in Chemistry "for their elucidation of the enzymatic mechanism underlying the synthesis of adenosine triphosphate (ATP)" Walker determined the crystal structure of ATP synthase, and this structure confirmed a mechanism earlier proposed by Boyer, mainly on the basis of isotopic studies.[114]
  • 1999 - G. N. Ramachandran wins the fifth IUCr Ewald Prize "for his outstanding contributions to the field of crystallography: in the area of anomalous scattering and its use in the solution of the phase problem, in the analysis of the structure of fibres, collagen in particular, and, foremost, for his fundamental works on the macromolecular conformation and the validation of macromolecular structures by means of the 'Ramachandran plot', which even today remains the most useful validation tool".[115]

21st Century

  • 2000 - Janos Hajdu, Richard Neutze, and colleagues calculated that they could use Sayre’s ideas from the 1950s, to implement a ‘diffraction before destruction’ concept, using an X-ray free-electron laser (XFEL).[116]
  • 2001 - Harry F. Noller’s group publish the 5.5-Å structure of the complete Thermus thermophilus 70S ribosome. This structure revealed that the major functional regions of the ribosome were based on RNA, establishing the primordial role of RNA in translation.[117]
  • 2001 - Roger Kornberg’s group publish the 2.8-Å structure of Saccharomyces cerevisiae RNA polymerase. The structure allowed both transcription initiation and elongation mechanisms to be deduced. Simultaneously, this group reported the structure of free RNA polymerase II, which contributed towards the eventual visualisation of the interaction between DNA, RNA, and the ribosome.[118][119][120]
  • 2002 - Michael Woolfson wins the sixth IUCr Ewald Prize "for his exceptional contributions in developing the conceptual and theoretical framework of direct methods along with the algorithm design and computer programs for automatic solutions that changed the face of structural science and for his contributions to crystallographic education and international collaboration, which have strengthened the intellectual development of crystallographers worldwide".[121]
  • 2005 - Philip Coppens wins the seventh IUCr Ewald Prize "for his contributions to developing the fields of electron density determination and the crystallography of molecular excited states, and for his contributions to the education and inspiration of young crystallographers as an enthusiastic teacher by participating in and organizing many courses and workshops".[122]
  • 2007 - Two X-ray crystal structures of a GPCR, the human β2 adrenergic receptor, were published. Because many drugs elicit their biological effect(s) by binding to a GPCR, the structures of these and other GPCRs may be used to develop efficacious drugs with few side effects.[123][124]
  • 2008 - David Sayre wins the eighth IUCr Ewald Prize "for the unique breadth of his contributions to crystallography, which range from seminal contributions to the solving of the phase problem to the complex physics of imaging generic objects by X-ray diffraction and microscopy, and for never losing touch with the physical reality of the processes involved".[125]
  • 2009 - Venkatraman Ramakrishnan, Thomas A. Steitz and Ada E. Yonath share the Nobel Prize in Chemistry "for studies of the structure and function of the ribosome."[126]
  • 2011 - Sandra Van Aert, Kees Joost Batenburg et. al. determined the 3D atomic positions of a silver nanoparticle using electron tomography.[127]
  • 2011 - Dan Shechtman receives the Nobel Prize in chemistry "for the discovery of quasicrystals."[128]
  • 2011 - Eleanor Dodson, Carmelo Giacovazzo and George M. Sheldrick share the ninth IUCr Ewald Prize "for the enormous impact they have made on structural crystallography through the development of new methods that have then been made available to users as constantly maintained and extended software. Their invaluable contributions to computational crystallography have resulted in the leading program suites CCP4, SIR and SHELX, respectively. All over the world thousands of crystallographers benefit from their achievements on a daily basis".[129]
  • 2014 - Aloysio Janner and Ted Janssen share the tenth IUCr Ewald Prize "for the development of superspace crystallography and its application to the analysis of aperiodic crystals".[130]
  • 2017 - Jacques Dubochet, Joachim Frank and Richard Henderson share the Nobel Prize in chemistry "for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution.""[131]
  • 2017 - Tom Blundell wins the eleventh IUCr Ewald Prize "for his work as one of the worldwide leaders in crystallographic innovation, especially at the interface with life sciences; starting with his work on determining the structure of insulin with Dorothy Hodgkin, he determined an exceptionally broad array of medically critical human protein structures, championing methods enabling drug design and discovery through structural optimization, crystallographic fragment screening, and computational modelling, and for being a leader in advanced crystallographic education internationally".[132]
  • 2021 - Olga Kennard wins the twelfth IUCr Ewald Prize "for her invaluable pioneering contribution to the development of crystallographic databases, in particular the Cambridge Structural Database (CSD)".[133]
  • 2023 - Wayne Hendrickson wins the thirteenth IUCr Ewald Prize "for his exceptional contribution to structural biology including the development of MAD/SAD methods and crystallographic theory. No-one else is so singularly and formatively identified with the explosive growth in biological crystallography and the consequent benefits to chemistry and biology.".[134]

References

  1. Cappeller, M.A. (1723), Prodromus crystallographiae de crystallis improprie sic dictis commentarium, H.R. Wyssing, Lucerne
  2. Macquer, P.-J. (1766). Dictionnaire de Chymie, Lacombe, Paris
  3. Romé de l'Isle, J.-B. L. (1772). Essai de Cristallographie, Paris
  4. Brock, H. (1910). The Catholic Encyclopedia, New York: Robert Appleton Company.
  5. Haüy, R.J. (1782). Sur la structure des cristaux de grenat, Observations sur la physique, sur l’histoire naturelle et sur les arts, XIX, 366-370
  6. Haüy, R.J. (1782). Sur la structure des cristaux des spaths calcaires, Observations sur la physique, sur l’histoire naturelle et sur les arts. XX, 33-39
  7. Romé de l'Isle, J.-B. L. (1783). Cristallographie ou description des formes propres à tous les corps du règne minéral dans l'état de combinaison saline, pierreuse ou métallique, Paris
  8. Haüy, R.J. (1784). Essai d’une théorie sur la structure des cristaux, appliquée à plusieurs genres de substances cristallisées, Chez Gogué et Née de La Rochelle, Paris
  9. Haüy, R.J. (1795). Leçons de Physique, in Séances des Ecoles normales […], L. Reynier, Paris
  10. Haüy, R.J. (1801). Traité de Minéralogie, Chez Louis, Paris
  11. Haüy, R.J. (1822). Traité de Cristallographie, Bachelier et Huzard, Paris
  12. Haüy, R.J. (1815). Memoire sur une loi de cristallisation appelée loi de symmétrie, Mémoires du Muséum d’Histoire naturelle 1, 81-101, 206-225, 273-298, 341-352
  13. Weiss, C.S. (1815). Uebersichtliche Darstellung der versschiedenen naturlichen Abteilungen der Kristallisations-Systeme, Abh. K. Akad. Wiss. Berlin. 289-337, 1814-1815.
  14. Melhado, Evan M. (1980-01-01). "Mitscherlich's Discovery of Isomorphism" (in en). Historical Studies in the Physical Sciences 11 (1): 87–123. doi:10.2307/27757472. ISSN 0073-2672. https://online.ucpress.edu/hsns/article/11/1/87/47459/Mitscherlich-s-Discovery-of-Isomorphism. 
  15. Mohs, F. (1822). On the crystallographic discoveries and systems of Weiss and Mohs, The Edinburgh Philosophical Journal VIII, 275-290
  16. Neumann, F.E. (1823). Beiträge zur Krystallonomie, Ernst Siegfried Mittler, Berlin und Posen
  17. Seeber, L.A. (1824). Versuch einer Erklärung des inneren Baues der Festen Körper, Ann. Phys. 76, 229-248, 349-371
  18. Frankenheim, M.L. (1826). Crystallonomische Aufsätze, Isis (Jena) 19, 497-515, 542-565
  19. Hessel J.F.C. (1830). Krystallometrie oder Krystallonomie und Krystallographie, in Gehler’s Physikalisches Wörterbuch, 8, 1023-1360, Schwickert, Leipzig
  20. Wöhler; Liebig (1832). "Untersuchungen über das Radikal der Benzoesäure" (in de). Annalen der Pharmacie 3 (3): 249–282. doi:10.1002/jlac.18320030302. https://onlinelibrary.wiley.com/doi/10.1002/jlac.18320030302. 
  21. Miller, W.H. (1839). A Treatise on Crystallography, Deighton-Parker, Cambridge, London
  22. Delafosse, G. (1840). De la Structure des Cristaux […] sur l’Importance de l’etude de la Symétrie dans les différentes Branches de l’Histoire Naturelle […], Fain and Thunot, Paris
  23. Frankenheim, M.L. (1842). System der Kristalle. Nova Acta Acad. Naturae Curiosorum, 19, No. 2, 469-660
  24. Pasteur, L. (1848). Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire (Memoir on the relationship that can exist between crystalline form and chemical composition, and on the cause of rotary polarization), Comptes rendus de l'Académie des sciences (Paris), 26 : 535–538
  25. Bravais, A. (1850). Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l’espace, J. l’Ecole Polytechnique 19, 1
  26. Gadolin, A. (1871). Mémoire sur la déduction d’un seul principe de tous les systems cristallographiques avec leurs subdivisions (Memoir on the deduction from a single principle of all the crystal systems with their subdivisions), Acta Soc. Sci. Fennicae. 9, 1-71
  27. Sohncke, L. (1879). Entwickelung einer Theorie der Krystallstruktur, B.G. Teubner, Leipzig
  28. Fedorov, E. (1891). The symmetry of regular systems of figures, Zap. Miner. Obshch. (Trans. Miner. Soc. Saint Petersburg) 28, 1-146
  29. Schoenflies, A. (1891). Kristallsysteme und Kristallstruktur. B. G. Teubner
  30. Barlow W. (1894). Über die Geometrischen Eigenschaften homogener starrer Strukturen und ihre Anwendung auf Krystalle (On the geometrical properties of homogeneous rigid structures and their application to crystals), Zeitschrift für Krystallographie und Minerologie, vol. 23, pages 1–63.
  31. Röntgen, W.C. (23 January 1896). On a new kind of rays. Nature 53, 274-276
  32. "XIII. Polarised röntgen radiation" (in en). Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 204 (372–386): 467–479. 1905. doi:10.1098/rsta.1905.0013. ISSN 0264-3952. 
  33. Walter, B.; Pohl, R. (1908). "Zur Frage der Beugung der Röntgenstrahlen" (in de). Annalen der Physik 330 (4): 715–724. doi:10.1002/andp.19083300405. Bibcode1908AnP...330..715W. https://onlinelibrary.wiley.com/doi/10.1002/andp.19083300405. 
  34. Walter, B.; Pohl, R. (1909). "Weitere Versuche über die Beugung der Röntgenstrahlen" (in de). Annalen der Physik 334 (7): 331–354. doi:10.1002/andp.19093340707. Bibcode1909AnP...334..331W. https://onlinelibrary.wiley.com/doi/10.1002/andp.19093340707. 
  35. Laue, Max von (1912). Eine quantitative prüfung der theorie für die interferenz-erscheinungen bei Röntgenstrahlen, Sitzungsberichte der Kgl. Bayer. Akad. Der Wiss. 363–373
  36. Bragg, W.L. (1913). The Diffraction of Short Electromagnetic Waves by a Crystal, Proc. Cambridge Phil. Soc. 17, 43-57
  37. Baumhauer, Heinrich (1912-12-01). "VII. Über die Krystalle des Carborundums" (in en). Zeitschrift für Kristallographie - Crystalline Materials 50 (1–6): 33–39. doi:10.1524/zkri.1912.50.1.33. ISSN 2196-7105. https://www.degruyter.com/document/doi/10.1524/zkri.1912.50.1.33/html. 
  38. Bragg, W. L. (1913). The structure of crystals as indicated by their diffraction of X-rays, Proc. Royal. Soc. Lond. A, 89, 248–77
  39. "The Nobel Prize in Physics 1914"
  40. "The Nobel Prize in Physics 1915"
  41. Debye, P. & Scherrer P. (1916). Interferenzen an regellos orientierten Teilchen im Röntgenlicht, I. Physik. Z. 17, 277–283
  42. Ewald, P. P. (1916). "Zur Begründung der Kristalloptik" (in de). Annalen der Physik 354 (2): 117–143. doi:10.1002/andp.19163540202. Bibcode1916AnP...354..117E. https://onlinelibrary.wiley.com/doi/10.1002/andp.19163540202. 
  43. Hull, A.W. (1917). The crystal structure of iron, Phys. Rev. 9, 83-87
  44. Dickinson, R. G. & Raymond, A. L. (1923). The crystal structure of hexamethylenetetramine, J. Am. Chem. Soc. 45, 22–29
  45. Gonell, H. J. & Mark, H. (1923). Röntgenographische Bestimmung der Strukturformel des Hexamethylentetramins, Z. Phys. Chem. 107, 181–218
  46. Bragg, W. H. & Gibbs, R. E. (1925). The structure of α and β quartz, Proc. R. Soc. Lond. A 109, 405–426
  47. Goldschmidt, V. M. (1926). Geochemische Verteilungsgesetze, VII: Die Gesetze der Krystallochemie (Skrifter Norsk. Vid. Akademie, Oslo, Mat. Nat. Kl.
  48. Machatschki, F. (1928). Zur Frage der Struktur und Konstitution der Feldspäte, Zentralbl. Min. 97–100
  49. Lonsdale, K. (1928). The structure of the benzene ring. Nature 122, 810
  50. Niggli, Paul (1928) (in German). Krystallographische und strukturtheoretische Grundbegriffe. Leipzig: Akad. Verl.-Ges.. OCLC 180664864. https://www.worldcat.org/oclc/180664864. 
  51. Pauling, L. (1929). The principles determining the structure of complex ionic crystals, J. Am. Chem. Soc. 51, 1010–1026
  52. Bragg W. L. (1930). The structure of silicates, Z. Kistallogr. 74, 237–305
  53. Ewald, Paul Peter; Hermann, C (1931) (in German). Strukturbericht, 1913-1928. Leipzig: Akademische Verlagsgesellschaft. OCLC 29150452. https://www.worldcat.org/oclc/29150452. 
  54. Rinne, Friedrich (1932-11-01). "Über Beziehungen der gewässerten Bromphenanthrensulfosäure zu organismischen Parakristallen" (in en). Zeitschrift für Kristallographie - Crystalline Materials 82 (1–6): 379–393. doi:10.1524/zkri.1932.82.1.379. ISSN 2196-7105. https://www.degruyter.com/document/doi/10.1524/zkri.1932.82.1.379/html. 
  55. Rinne, Friedrich (1933). "Investigations and considerations concerning paracrystallinity" (in en). Transactions of the Faraday Society 29 (140): 1016–1032. doi:10.1039/TF9332901016. ISSN 0014-7672. https://pubs.rsc.org/en/content/articlelanding/1933/tf/tf9332901016. 
  56. Patterson, A. L. (1934). A Fourier series method for the determination of the components of interatomic distances in crystals, Phys. Rev. 46, 372–376
  57. Kamminga H. (1989). The International Union of Crystallography: its formation and early development, Acta Cryst, A45, 581–601
  58. "The Nobel Prize in Chemistry 1936"
  59. "The Nobel Prize in Physics 1937"
  60. Brindley, G. W.; Robinson, Keith (1945). "Structure of Kaolinite" (in en). Nature 156 (3970): 661–662. doi:10.1038/156661b0. ISSN 1476-4687. Bibcode1945Natur.156R.661B. https://www.nature.com/articles/156661b0. 
  61. Kamminga, Harmke (1989). The International Union of Crystallography: its formation and early development, Acta Crystallogr. A45, 581–601
  62. "The Nobel Prize in Chemistry 1946"
  63. Ramsdell, Lewis S. (1947). "Studies on silicon carbide". American Mineralogist 32 (1–2): 64–82. ISSN 0003-004X. http://www.minsocam.org/ammin/AM32/AM32_64.pdf. 
  64. Shull, C. G. & Smart, J. S. (1949). Detection of antiferromagnetism by neutron diffraction, Phys. Rev. 76, 1256
  65. Karle, J. & Hauptman, H. (1950). The phases and magnitudes of the structure factors, Acta Crystallogr. 3, 181–187
  66. Bijvoet, J. M., Peerdeman, A. F. & van Bommel, A. J. (1951). Determination of the absolute configuration of optically active compounds by means of X-Rays, Nature 168, 271–272
  67. Pauling, L., Corey, R. B. & Branson, H. R. (1951). The structure of proteins: two hydrogen bonded helical configurations of the polypeptide chain, Proc. Natl. Acad. Sci. USA 37, 205–211
  68. Corey, R. B. & Pauling, L. (1951). The pleated sheet, a new layer conformation of polypeptide chains, Proc. Natl Acad. Sci. USA 37, 251–256
  69. Shubnikov, A.V. (1951). Symmetry and antisymmetry of finite figures, Izv. Akad. Nauk SSSR, Moscow (in Russian)
  70. Shubnikov, A.V. and Belov, N.V. (1964). Colored Symmetry, Holser, W.T. (ed.), New York, Pergamon
  71. Sayre, D. (1952). Some implications of a theorem due to Shannon, Acta Crystallogr. 5, 843
  72. Fischer, E. O. & Pfab, W. (1952). Cyclopentadien-metallkomplexe, ein Neuer Typ Metallorganischer Verbindungen, Z. Naturforsch. B 7, 377–379
  73. Wilkinson, G. (1975). The iron sandwich. A recollection of the first four months, J. Organomet. Chem. 100, 273–278
  74. Magnéli, A. (1953-06-10). "Structures of the ReO3-type with recurrent dislocations of atoms: 'homologous series' of molybdenum and tungsten oxides" (in en). Acta Crystallographica 6 (6): 495–500. doi:10.1107/S0365110X53001381. ISSN 0365-110X. http://scripts.iucr.org/cgi-bin/paper?S0365110X53001381. 
  75. Watson, J. D. & Crick, F. H. C. (1953). Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid, Nature 171, 737–738
  76. Franklin, R. E. & Gosling, R. G. (1953). Molecular configuration in sodium thymonucleate, Nature 171, 740–741
  77. Wilkins, M. H. F., Stokes, A. R. & Wilson, H. R. (1953). Molecular structure of deoxypentose nucleic acids, Nature 171, 738–740
  78. Ukichiro Nakaya (2013). Snow crystals.. Cambridge: Harvard Univ Press. ISBN 978-0-674-18276-9. OCLC 900567451. https://www.worldcat.org/oclc/900567451. 
  79. "The Nobel Prize in Chemistry 1954"
  80. Cruickshank, D. W. J. (1956-09-01). "The analysis of the anisotropic thermal motion of molecules in crystals". Acta Crystallographica 9 (9): 754–756. doi:10.1107/s0365110x56002047. ISSN 0365-110X. http://dx.doi.org/10.1107/s0365110x56002047. 
  81. Kendrew, J. C. et al. (1960). Structure of myoglobin: a three-dimensional Fourier synthesis at 2 Å resolution, Nature 185, 422–427
  82. Perutz, M. F. et al. (1960). Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution, obtained by X-ray analysis, Nature 185, 416–422
  83. Rossmann, M. G. & Blow, D. M. (1962). The detection of sub-units within the crystallographic asymmetric unit, Acta Crystallogr. 15, 24–31
  84. "The Nobel Prize in Chemistry 1962"
  85. "The Nobel Prize in Medicine 1962"
  86. "The Nobel Prize in Chemistry 1964"
  87. Rietveld, H. M. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallogr. 22, 151–152
  88. DeRosier, D. J. & Klug, A. (1968). Reconstruction of three-dimensional structures from electron micrographs, Nature 217, 130–134
  89. Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, Hodgkin DC, et al. (1971). Atomic positions in rhombohedral 2-zinc insulin crystals, Nature, 231 (5304), 506–11
  90. Protein Data Bank, Nature New Biol. 233, 223 (1971)
  91. Meyer, E. F. Jr (1971). Interactive computer display for the three-dimensional study of macromolecular structures, Nature 232, 255–257
  92. Kim, S. H. et al. (1973). Three-dimensional structure of a yeast phenylalanine transfer RNA: folding of the polynucleotide chain, Science 179, 285–288
  93. "The Nobel Prize in Chemistry 1973"
  94. "The Nobel Prize in Chemistry 1976"
  95. Harrison, S. C. et al. (1978). Tomato bushy stunt virus at 2.9 Å resolution, Nature 276, 368–373
  96. "Gregori Aminoff Prize"
  97. Karle J. (1980). Some Developments in Anomalous Dispersion for the Structural Investigation of Macromolecular Systems in Biology, International Journal of Quantum Chemistry: Quantum Biology Symposium, 7, 357–367
  98. "The Nobel Prize in Chemistry 1982"
  99. Shechtman, D. Blech, I., Gratias, D. & Cahn, J. W. (1984). Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53, 1951–1953
  100. Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. (1984). Structure of the nucleosome core particle at 7 Å resolution, Nature 311, 532–537
  101. "The Nobel Prize in Chemistry 1985"
  102. Deisenhofer J., Epp, O., Miki, K., Huber, R. & Michel, H. (1985). Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution, Nature 318, 618–624
  103. "The Nobel Prize in Physics 1986"
  104. "First Ewald Prize"
  105. "The Nobel Prize in Chemistry 1988"
  106. "Second Ewald Prize"
  107. Weiss, M. S. et al. (1991). Molecular architecture and electrostatic properties of a bacterial porin, Science 254, 1627–1630
  108. "Report of the Executive Committee for 1991". Acta Crystallographica Section A 48 (6): 922–946. 1992. doi:10.1107/S0108767392008328. 
  109. "Third Ewald Prize"
  110. Abrahams, J. P., Leslie, A, G., Lutter, R. & Walker, J. E. (1994). Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria, Nature 370, 621–628
  111. "The Nobel Prize in Chemistry 1994"
  112. "Fourth Ewald Prize"
  113. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P. & Landau, E. M. (1997). X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases, Science 277, 1676–1681
  114. "The Nobel Prize in Chemistry 1997"
  115. "Fifth Ewald Prize"
  116. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses, Nature 406, 752–757
  117. Yusupov, M. M. et al. (2001). Crystal structure of the ribosome at 5.5 Å resolution, Science 292, 883–896
  118. Yusupov, M. M. et al. (2001). Crystal structure of the ribosome at 5.5 Å resolution, Science 292, 883–896
  119. Cramer, P., Bushnell, D. A. & Kornberg, R. D. (2001). Structural basis of transcription: RNA polymerase II at 2.8 Å resolution, Science 292, 1863–1876
  120. Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. (2001). Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution, Science 292, 1876–1882
  121. "Sixth Ewald Prize"
  122. "Seventh Ewald Prize"
  123. Rasmussen, S. G. et al. (2007). Crystal structure of the human β2 adrenergic G-protein-coupled receptor, Nature 450, 383–387
  124. Cherezov, V. et al. (2007). High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor, Science 318, 1258–1265
  125. "Eighth Ewald Prize"
  126. "The Nobel Prize in Chemistry 2009"
  127. Van Aert, Sandra; Batenburg, Kees J.; Rossell, Marta D.; Erni, Rolf; Van Tendeloo, Gustaaf (2011-02-02). "Three-dimensional atomic imaging of crystalline nanoparticles" (in en). Nature 470 (7334): 374–377. doi:10.1038/nature09741. ISSN 0028-0836. PMID 21289625. Bibcode2011Natur.470..374V. http://www.nature.com/articles/nature09741. 
  128. "The Nobel Prize in Chemistry 2011"
  129. "Ninth Ewald Prize"
  130. "Tenth Ewald Prize"
  131. "The Nobel Prize in Chemistry 2017"
  132. "Eleventh Ewald Prize"
  133. "Twelfth Ewald Prize"
  134. "Thirteenth Ewald Prize"

Further reading

  • Authier, André (2013), Early Days of X-ray Crystallography, Oxford Univ. Press
  • Burke, John G. (1966), Origins of the Science of Crystals, University of California Press
  • Ewald, P. P. (ed.) (1962), 50 Years of X-ray Diffraction, IUCR, Oosthoek
  • Kubbinga, H. (2012), Crystallography from Haüy to Laue: controversies on the molecular and atomistic nature of solids, Z. Kristallogr. 227, 1–26
  • Lima-de-Faria, José (ed.) (1990), Historical atlas of crystallography, Springer Netherlands
  • Milestones in Crystallography, Nature, August 2014
  • Whitlock, H.P. (1934). A Century of Progress in Crystallography, The American Mineralogist, 19, 93-100