Total set
From HandWiki
In functional analysis, a total set (also called a complete set) in a vector space is a set of linear functionals [math]\displaystyle{ T }[/math] with the property that if a vector [math]\displaystyle{ x \in X }[/math] satisfies [math]\displaystyle{ f(x) = 0 }[/math] for all [math]\displaystyle{ f \in T, }[/math] then [math]\displaystyle{ x = 0 }[/math] is the zero vector.[1] In a more general setting, a subset [math]\displaystyle{ T }[/math] of a topological vector space [math]\displaystyle{ X }[/math] is a total set or fundamental set if the linear span of [math]\displaystyle{ T }[/math] is dense in [math]\displaystyle{ X. }[/math][2]
See also
References
- ↑ Klauder, John R. (2010). A Modern Approach to Functional Integration. Springer Science & Business Media. p. 91. ISBN 9780817647902. https://archive.org/details/modernapproachto00jrkl.
- ↑ Lomonosov, L. I.. "Total set". Springer. http://www.encyclopediaofmath.org/index.php?title=Total_set&oldid=14064. Retrieved 14 September 2014.
Original source: https://en.wikipedia.org/wiki/Total set.
Read more |