Ultrabarrelled space
In functional analysis and related areas of mathematics, an ultrabarrelled space is a topological vector spaces (TVS) for which every ultrabarrel is a neighbourhood of the origin.
Definition
A subset [math]\displaystyle{ B_0 }[/math] of a TVS [math]\displaystyle{ X }[/math] is called an ultrabarrel if it is a closed and balanced subset of [math]\displaystyle{ X }[/math] and if there exists a sequence [math]\displaystyle{ \left(B_i\right)_{i=1}^{\infty} }[/math] of closed balanced and absorbing subsets of [math]\displaystyle{ X }[/math] such that [math]\displaystyle{ B_{i+1} + B_{i+1} \subseteq B_i }[/math] for all [math]\displaystyle{ i = 0, 1, \ldots. }[/math] In this case, [math]\displaystyle{ \left(B_i\right)_{i=1}^{\infty} }[/math] is called a defining sequence for [math]\displaystyle{ B_0. }[/math] A TVS [math]\displaystyle{ X }[/math] is called ultrabarrelled if every ultrabarrel in [math]\displaystyle{ X }[/math] is a neighbourhood of the origin.[1]
Properties
A locally convex ultrabarrelled space is a barrelled space.[1] Every ultrabarrelled space is a quasi-ultrabarrelled space.[1]
Examples and sufficient conditions
Complete and metrizable TVSs are ultrabarrelled.[1] If [math]\displaystyle{ X }[/math] is a complete locally bounded non-locally convex TVS and if [math]\displaystyle{ B_0 }[/math] is a closed balanced and bounded neighborhood of the origin, then [math]\displaystyle{ B_0 }[/math] is an ultrabarrel that is not convex and has a defining sequence consisting of non-convex sets.[1]
Counter-examples
There exist barrelled spaces that are not ultrabarrelled.[1] There exist TVSs that are complete and metrizable (and thus ultrabarrelled) but not barrelled.[1]
See also
- Barrelled space – Type of topological vector space
- Countably barrelled space
- Countably quasi-barrelled space
- Infrabarreled space
Citations
Bibliography
- {{cite journal
- Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN 978-3-540-09096-0. OCLC 4493665.
- Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
- Khaleelulla, S. M. (July 1, 1982). written at Berlin Heidelberg. Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. 936. Berlin New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Robertson, Alex P.; Robertson, Wendy J. (1964). Topological vector spaces. Cambridge Tracts in Mathematics. 53. Cambridge University Press. pp. 65–75.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Trèves, François (August 6, 2006). Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
Original source: https://en.wikipedia.org/wiki/Ultrabarrelled space.
Read more |