Distinguished space
In functional analysis and related areas of mathematics, distinguished spaces are topological vector spaces (TVSs) having the property that weak-* bounded subsets of their biduals (that is, the strong dual space of their strong dual space) are contained in the weak-* closure of some bounded subset of the bidual.
Definition
Suppose that [math]\displaystyle{ X }[/math] is a locally convex space and let [math]\displaystyle{ X^{\prime} }[/math] and [math]\displaystyle{ X^{\prime}_b }[/math] denote the strong dual of [math]\displaystyle{ X }[/math] (that is, the continuous dual space of [math]\displaystyle{ X }[/math] endowed with the strong dual topology). Let [math]\displaystyle{ X^{\prime \prime} }[/math] denote the continuous dual space of [math]\displaystyle{ X^{\prime}_b }[/math] and let [math]\displaystyle{ X^{\prime \prime}_b }[/math] denote the strong dual of [math]\displaystyle{ X^{\prime}_b. }[/math] Let [math]\displaystyle{ X^{\prime \prime}_{\sigma} }[/math] denote [math]\displaystyle{ X^{\prime \prime} }[/math] endowed with the weak-* topology induced by [math]\displaystyle{ X^{\prime}, }[/math] where this topology is denoted by [math]\displaystyle{ \sigma\left(X^{\prime \prime}, X^{\prime}\right) }[/math] (that is, the topology of pointwise convergence on [math]\displaystyle{ X^{\prime} }[/math]). We say that a subset [math]\displaystyle{ W }[/math] of [math]\displaystyle{ X^{\prime \prime} }[/math] is [math]\displaystyle{ \sigma\left(X^{\prime \prime}, X^{\prime}\right) }[/math]-bounded if it is a bounded subset of [math]\displaystyle{ X^{\prime \prime}_{\sigma} }[/math] and we call the closure of [math]\displaystyle{ W }[/math] in the TVS [math]\displaystyle{ X^{\prime \prime}_{\sigma} }[/math] the [math]\displaystyle{ \sigma\left(X^{\prime \prime}, X^{\prime}\right) }[/math]-closure of [math]\displaystyle{ W }[/math]. If [math]\displaystyle{ B }[/math] is a subset of [math]\displaystyle{ X }[/math] then the polar of [math]\displaystyle{ B }[/math] is [math]\displaystyle{ B^{\circ} := \left\{ x^{\prime} \in X^{\prime} : \sup_{b \in B} \left\langle b, x^{\prime} \right\rangle \leq 1 \right\}. }[/math]
A Hausdorff locally convex space [math]\displaystyle{ X }[/math] is called a distinguished space if it satisfies any of the following equivalent conditions:
- If [math]\displaystyle{ W \subseteq X^{\prime \prime} }[/math] is a [math]\displaystyle{ \sigma\left(X^{\prime \prime}, X^{\prime}\right) }[/math]-bounded subset of [math]\displaystyle{ X^{\prime \prime} }[/math] then there exists a bounded subset [math]\displaystyle{ B }[/math] of [math]\displaystyle{ X^{\prime \prime}_b }[/math] whose [math]\displaystyle{ \sigma\left(X^{\prime \prime}, X^{\prime}\right) }[/math]-closure contains [math]\displaystyle{ W }[/math].[1]
- If [math]\displaystyle{ W \subseteq X^{\prime \prime} }[/math] is a [math]\displaystyle{ \sigma\left(X^{\prime \prime}, X^{\prime}\right) }[/math]-bounded subset of [math]\displaystyle{ X^{\prime \prime} }[/math] then there exists a bounded subset [math]\displaystyle{ B }[/math] of [math]\displaystyle{ X }[/math] such that [math]\displaystyle{ W }[/math] is contained in [math]\displaystyle{ B^{\circ\circ} := \left\{ x^{\prime\prime} \in X^{\prime\prime} : \sup_{x^{\prime} \in B^{\circ}} \left\langle x^{\prime}, x^{\prime\prime} \right\rangle \leq 1 \right\}, }[/math] which is the polar (relative to the duality [math]\displaystyle{ \left\langle X^{\prime}, X^{\prime\prime} \right\rangle }[/math]) of [math]\displaystyle{ B^{\circ}. }[/math][1]
- The strong dual of [math]\displaystyle{ X }[/math] is a barrelled space.[1]
If in addition [math]\displaystyle{ X }[/math] is a metrizable locally convex topological vector space then this list may be extended to include:
- (Grothendieck) The strong dual of [math]\displaystyle{ X }[/math] is a bornological space.[1]
Sufficient conditions
All normed spaces and semi-reflexive spaces are distinguished spaces.[2] LF spaces are distinguished spaces.
The strong dual space [math]\displaystyle{ X_b^{\prime} }[/math] of a Fréchet space [math]\displaystyle{ X }[/math] is distinguished if and only if [math]\displaystyle{ X }[/math] is quasibarrelled.[3]
Properties
Every locally convex distinguished space is an H-space.[2]
Examples
There exist distinguished Banach spaces spaces that are not semi-reflexive.[1] The strong dual of a distinguished Banach space is not necessarily separable; [math]\displaystyle{ l^{1} }[/math] is such a space.[4] The strong dual space of a distinguished Fréchet space is not necessarily metrizable.[1] There exists a distinguished semi-reflexive non-reflexive non-quasibarrelled Mackey space [math]\displaystyle{ X }[/math] whose strong dual is a non-reflexive Banach space.[1] There exist H-spaces that are not distinguished spaces.[1]
Fréchet Montel spaces are distinguished spaces.
See also
- Montel space – Barrelled space where closed and bounded subsets are compact
- Semi-reflexive space
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Khaleelulla 1982, pp. 32-63.
- ↑ 2.0 2.1 Khaleelulla 1982, pp. 28-63.
- ↑ Gabriyelyan, S.S. "On topological spaces and topological groups with certain local countable networks (2014)
- ↑ Khaleelulla 1982, pp. 32-630.
Bibliography
- Bourbaki, Nicolas (1950). "Sur certains espaces vectoriels topologiques" (in French). Annales de l'Institut Fourier 2: 5–16 (1951). doi:10.5802/aif.16. http://www.numdam.org/item?id=AIF_1950__2__5_0.
- Robertson, Alex P.; Robertson, Wendy J. (1980). Topological Vector Spaces. Cambridge Tracts in Mathematics. 53. Cambridge England: Cambridge University Press. ISBN 978-0-521-29882-7. OCLC 589250.
- Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN 978-3-540-09096-0. OCLC 4493665.
- Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
- Khaleelulla, S. M. (July 1, 1982). written at Berlin Heidelberg. Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. 936. Berlin New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Trèves, François (August 6, 2006). Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
Original source: https://en.wikipedia.org/wiki/Distinguished space.
Read more |