Saturated family

From HandWiki
Revision as of 13:50, 24 October 2022 by AstroAI (talk | contribs) (fixing)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In mathematics, specifically in functional analysis, a family [math]\displaystyle{ \mathcal{G} }[/math] of subsets a topological vector space (TVS) [math]\displaystyle{ X }[/math] is said to be saturated if [math]\displaystyle{ \mathcal{G} }[/math] contains a non-empty subset of [math]\displaystyle{ X }[/math] and if for every [math]\displaystyle{ G \in \mathcal{G}, }[/math] the following conditions all hold:

  1. [math]\displaystyle{ \mathcal{G} }[/math] contains every subset of [math]\displaystyle{ G }[/math];
  2. the union of any finite collection of elements of [math]\displaystyle{ \mathcal{G} }[/math] is an element of [math]\displaystyle{ \mathcal{G} }[/math];
  3. for every scalar [math]\displaystyle{ a, }[/math] [math]\displaystyle{ \mathcal{G} }[/math] contains [math]\displaystyle{ aG }[/math];
  4. the closed convex balanced hull of [math]\displaystyle{ G }[/math] belongs to [math]\displaystyle{ \mathcal{G}. }[/math][1]

Definitions

If [math]\displaystyle{ \mathcal{S} }[/math] is any collection of subsets of [math]\displaystyle{ X }[/math] then the smallest saturated family containing [math]\displaystyle{ \mathcal{S} }[/math] is called the saturated hull of [math]\displaystyle{ \mathcal{S}. }[/math][1]

The family [math]\displaystyle{ \mathcal{G} }[/math] is said to cover [math]\displaystyle{ X }[/math] if the union [math]\displaystyle{ \bigcup_{G \in \mathcal{G}} G }[/math] is equal to [math]\displaystyle{ X }[/math]; it is total if the linear span of this set is a dense subset of [math]\displaystyle{ X. }[/math][1]

Examples

The intersection of an arbitrary family of saturated families is a saturated family.[1] Since the power set of [math]\displaystyle{ X }[/math] is saturated, any given non-empty family [math]\displaystyle{ \mathcal{G} }[/math] of subsets of [math]\displaystyle{ X }[/math] containing at least one non-empty set, the saturated hull of [math]\displaystyle{ \mathcal{G} }[/math] is well-defined.[2] Note that a saturated family of subsets of [math]\displaystyle{ X }[/math] that covers [math]\displaystyle{ X }[/math] is a bornology on [math]\displaystyle{ X. }[/math]

The set of all bounded subsets of a topological vector space is a saturated family.

See also

References

  1. 1.0 1.1 1.2 1.3 Schaefer & Wolff 1999, pp. 79–82.
  2. Schaefer & Wolff 1999, pp. 79-88.