Biology:List of sequenced algae genomes
This list of sequenced algae genomes contains algae species known to have publicly available complete genome sequences that have been assembled, annotated and published. Unassembled genomes are not included, nor are organelle-only sequences. For plant genomes see the list of sequenced plant genomes. For plastid sequences, see the list of sequenced plastomes. For all kingdoms, see the list of sequenced genomes.
Dinoflagellates (Alveolata)
See also List of sequenced protist genomes.
Organism
strain |
Type | Relevance | Genome size | Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Breviolum minutum (Symbiodinium minutum; clade B1) | Dinoflagellate | Coral symbiont | 1.5 Gb | 47,014 | Okinawa Institute of Science and Technology | 2013[1] | Draft | OIST Marine Genomics[2] |
Cladocopium goreaui (Symbiodinium goreaui; clade C, type C1) | Dinoflagellate | Coral symbiont | 1.19 Gb | 35,913 | Reef Future Genomics (ReFuGe) 2020 / University of Queensland | 2018[3] | Draft | ReFuGe 2020[4] |
Cladocopium C92 strain Y103 (Symbiodinium sp. clade C; putative type C92) | Dinoflagellate | Foraminiferan symbiont | Unknown (assembly size 0.70 Gb) | 65,832 | Okinawa Institute of Science and Technology | 2018[5] | Draft | OIST Marine Genomics[2] |
Fugacium kawagutii CS156=CCMP2468 (Symbiodinium kawagutii; clade F1) | Dinoflagellate | Coral symbiont? | 1.07 Gb | 26,609 | Reef Future Genomics (ReFuGe) 2020 / University of Queensland | 2018[3] | Draft | ReFuGe 2020[4] |
Fugacium kawagutii CCMP2468 (Symbiodinium kawagutii; clade F1) | Dinoflagellate | Coral symbiont? | 1.18 Gb | 36,850 | University of Connecticut / Xiamen University | 2015[6] | Draft | S. kawagutii genome project[7] |
Polarella glacialis CCMP1383 | Dinoflagellate | Psychrophile, Antarctic | 3.02 Gb (diploid), 1.48 Gbp (haploid) | 58,232 | University of Queensland | 2020[8] | Draft | UQ eSpace[9] |
Polarella glacialis CCMP2088 | Dinoflagellate | Psychrophile, Arctic | 2.65 Gb (diploid), 1.30 Gbp (haploid) | 51,713 | University of Queensland | 2020[8] | Draft | UQ eSpace[9] |
Symbiodinium microadriaticum (clade A) | Dinoflagellate | Coral symbiont | 1.1 Gb | 49,109 | King Abdullah University of Science and Technology | 2016[10] | Draft | Reef Genomics[11] |
Symbiodinium A3 strain Y106 (Symbiodinium sp. clade A3) | Dinoflagellate | symbiont | Unknown (assembly size 0.77 Gb) | 69,018 | Okinawa Institute of Science and Technology | 2018[5] | Draft | OIST Marine Genomics[2] |
Cryptomonad
Organism
strain |
Type | Relevance | Genome size | Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Cryptophyceae sp. CCMP2293 | Nanoflagellate | Nucleomorph, Psychrophile | 534.5 Mb | 33,051 | Joint Genome Institute | 2016[12] | JGI Genome Portal[13] | |
Guillardia theta | Eukaryote Endosymbiosis | 87.2 Mb | 24, 840 | Dalhousie University | 2012[14] | The Greenhouse[15] |
Glaucophyte
Organism
strain |
Type | Relevance | Genome
size |
Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Cyanophora | Model
Organism |
70.2 Mb | 3,900 | Rutgers University | 2012[16] | Draft v1 | The Greenhouse[15]
Cyanophora Genome Project[17] | |
Cyanophora | Model
Organism |
99.94 Mb | 25,831 | Rutgers University | 2019[18] | Draft v2 | Cyanophora Genome Project[19] |
Green algae
Organism
strain |
Type | Relevance | Genome
size |
Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Asterochloris sp. Cgr/DA1pho | Photobiont | 55.8 Mb | 10,025 | Duke University | 2011[20] | JGI Genome Portal[13] | ||
Auxenochlorella protothecoides | Biofuels | 22.9 Mb | 7,039 | Tsinghua University | 2014[21] | The Greenhouse[15] | ||
Bathycoccus prasinos | Comparative analysis | 15.1 Mb | 7,900 | Joint Genome Institute | 2012[22] | JGI Genome Portal[13] | ||
Chlamydomonas reinhardtii CC-503
cw92 mt+ |
Model Organism | 111.1 Mb | 17,741 | Joint Genome Institute | 2017[23] | Phytozome[24]
The Greenhouse[15] | ||
Chlorella sorokiniana str. 1228 | Biofuels | 61.4 Mb | Los Alamos National Lab | 2018[25] | The Greenhouse[15] | |||
Chlorella sorokiniana UTEX 1230 | Biofuels | 58.5 Mb | Los Alamos National Lab | 2018[26] | The Greenhouse[15] | |||
Chlorella sorokiniana DOE1412 | Biofuels | 57.8 Mb | Los Alamos National Lab | 2018[27] | The Greenhouse[15] | |||
Chlorella variabilis NC64A | Biofuels | 46.2 Mb | 9,791 | 2010[28] | The Greenhouse[15] | |||
Chlorella vulgaris | Biofuels | 37.3 Mb | National Renewable | 2015[29] | The Greenhouse[15] | |||
Coccomyxa subellipsoidea
sp. C-169 |
Biofuels | 48.8 Mb | 9839 | Joint Genome Institute | 2012[30] | Phytozome[24]
The Greenhouse[15] | ||
Dunaliella salina
CCAP19/18 |
Halophile
Biofuels Beta-carotene and glycerol production |
343.7 Mb | 16,697 | Joint Genome Institute | 2017[31] | Phytozome[24] | ||
Eudorina sp. | Multicellular alga,
model organism |
~180 Mb | University of Tokyo | 2018[32] | ||||
Micromonas commoda NOUM17 (RCC288) | Marine phytoplankton | 21.0 Mb | 10,262 | Monterey Bay Aquarium Research Institute | 2013[33][34] | JGI Genome Portal[13] | ||
Micromonas
pusilla CCMP-1545 |
Marine | 21.9 Mb | 10,575 | Micromonas
Genome Consortium |
2009[35] | Phytozome[24]
The Greenhouse[15] | ||
Micromonas
RCC299/NOUM17 |
Marine | 20.9 Mb | 10,056 | Joint Genome | 2009[35] | Phytozome[24]
The Greenhouse[15] | ||
Monoraphidium | Biofuels | 69.7 Mb | 16,755 | Bielefeld
University |
2013[36] | The
Greenhouse[15] | ||
Ostreococcus
lucimarinus CCE9901 |
Small genome | 13.2 Mb | 7,603 | Joint Genome Institute | 2007[37] | Phytozome[24] | ||
Ostreococcus
tauri OTH95 |
Small genome | 12.9 Mb | 7,699 | CNRS | 2014[38] | The Greenhouse[15] | ||
Ostreococcus sp.
RCC809 |
Small genome | 13.3 Mb | 7,492 | Joint Genome | 2009[39] | JGI[40] | ||
Picochlorum
soloecismus DOE101 |
Biofuels | 15.2 Mb | 7,844 | Los Alamos | 2017[41] | The Greenhouse[15] | ||
Picochlorum
SENEW3 |
Biofuels | 13.5 Mb | 7,367 | Rutgers University | 2014[42] | The Greenhouse[15] | ||
Scenedesmus
obliquus DOE0152Z |
Biofuels | 210.3 Mb | Brooklyn College | 2017[43] | The Greenhouse[15] | |||
Symbiochloris reticulata (Metagenome) | Photobiont | 58.6 Mb | 12,720 | Joint Genome Institute | 2018[44] | JGI Genome Portal[13] | ||
Tetraselmis sp. | Biofuels | 228 Mb | Los Alamos | 2018[15] | The Greenhouse[15] | |||
Volvox carteri | Multicellular alga,
model organism |
131.2 Mb | 14,247 | Joint Genome | 2010[45] | Phytozome[24]
The Greenhouse[15] | ||
Yamagishiella unicocca | Multicellular alga,
model organism |
~140 Mb | University of Tokyo | 2018[32] |
Haptophyte
Organism
strain |
Type | Relevance | Genome
size |
Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Chrysochromulina
parva |
Biofuels | 65.8 Mb | Los Alamos National Laboratory | 2018[46] | The Greenhouse[15] | |||
Chrysochromulina tobinii CCMP291 | Model organism, Biofuels | 59.1 Mb | 16,765 | University of Washington | 2015[47] | The Greenhouse[15] | ||
Emiliania huxleyi | Coccolithophore | Alkenone production, Algal blooms | 167.7 Mb | 38,554 | Joint Genome Institute | 2013[48] | The Greenhouse[15] | |
Pavlovales sp. CCMP2436 | Psychrophile | 165.4 Mb | 26,034 | Joint Genome Institute | 2016[49] | JGI Genome Portal[13] |
Heterokonts/Stramenopiles
Organism
strain |
Type | Relevance | Genome
size |
Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Aureococcus | Harmful Algal
Bloom |
50.1 Mb | 11,522 | Joint Genome Institute | 2011[50] | The Greenhouse[15] | ||
Ectocarpus siliculosus | Brown algae | Model organism | 198.5 Mb | 16,269 | Genoscope | 2012[51] | The Greenhouse[15] | |
Fragilariopsis cylindrus CCMP1102 | Psychrophile | 61.1 Mb | 21,066 | University of East Anglia, Joint Genome Institute | 2017[52] | JGI Genome Portal[13] | ||
Nannochloropsis
gaditana |
Biofuels | 28.5 Mb | 10,486 | University of Padua | 2014[53] | The Greenhouse[15] | ||
Nannochloropsis
oceanica |
Biofuels | 31.5 Mb | Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology | 2016[54] | The Greenhouse[15] | |||
Nannochloropsis Salina CCMP1766 | Biofuels | 24.4 Mb | Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology | 2016[55] | The Greenhouse[15] | |||
Ochromonadaceae sp. CCMP2298 | Psychrophile | 61.1 Mb | 20,195 | Joint Genome Institute | 2016[56] | JGI Genome Portal[13] | ||
Pelagophyceae sp. CCMP2097 | Psychrophile | 85.2 Mb | 19,402 | Joint Genome Institute | 2016[57] | JGI Genome Portal[13] | ||
Phaeodactylum tricornutum | Model organism | 27.5 Mb | 10,408 | Diatom Consortium | 2008[58] | The Greenhouse[15] | ||
Pseudo-nitzschia multiseries CLN-47 | 218.7 Mb | 19,703 | Joint Genome Institute | 2011[59] | JGI Genome Portal[13] | |||
Saccharina japonica | Brown algae | Commercial crop | 543.4 Mb | Chinese Academy of Sciences, Beijing Institutes of Life Science | 2015[60] | The Greenhouse[15] | ||
Thalassiosira oceanica CCMP 1005 | Model organism | 92.2 Mb | 34,642 | The Future Ocean | 2012[61] | The Greenhouse[15] | ||
Thalassiosira pseudonana | model organism | 32.4 Mb | 11,673 | Diatom Consortium | 2009[62] | The Greenhouse[15] |
Red algae (Rhodophyte)
Organism
strain |
Type | Relevance | Genome
size |
Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Chondrus crispus | Carrageenan production, model organism | 105 Mb | 9,606 | Genoscope | 2013 | The Greenhouse[15] | ||
Cyanidioschyzon
merolae 10D |
Model
organism |
16.5 Mb | 4,775 | National Institute
of Genetics, Japan |
2007[63] | The Greenhouse[15] | ||
Galdieria sulphuraria | Extremophile | 12.1 Mb | The University of York | 2016[64] | The Greenhouse[15] | |||
Gracilariopsis chorda | Mesophile | 92.1 Mb | 10,806 | Sungkyunkwan University | 2018[65] | |||
Porphyridium purpureum | Mesophile | 19.7 Mb | 8,355 | Rutgers University | 2013[66] | |||
Porphyra umbilicalis | Mariculture | 87.6 Mb | 13,360 | University of Maine | 2017[67] | Phytozome[24] | ||
Pyropia yezoensis | Mariculture | 43.5 Mb | 10,327 | National Research Institute of Fisheries Science | 2013[68] |
Rhizaria
Organism
strain |
Type | Relevance | Genome
size |
Number
of genes predicted |
Organization | Year of
completion |
Assembly
status |
Links |
---|---|---|---|---|---|---|---|---|
Bigelowiella natans | Model organism | 94. Mb | 21,708 | Dalhousie University | 2012[14] | The Greenhouse[15] |
References
- ↑ "Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure". Current Biology 25 (15): 1399–1408. 2013. doi:10.1016/j.cub.2013.05.062. PMID 23850284.
- ↑ 2.0 2.1 2.2 "OIST Marine Genomics". http://marinegenomics.oist.jp/gallery/.
- ↑ 3.0 3.1 "Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis". Communications Biology 1: 95. 2018. doi:10.1038/s42003-018-0098-3. PMID 30271976.
- ↑ 4.0 4.1 "ReFuGe 2020 Data Site". http://refuge2020.reefgenomics.org.
- ↑ 5.0 5.1 "Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes". BMC Genomics 19 (1): 458. 2018. doi:10.1186/s12864-018-4857-9. PMID 29898658.
- ↑ "The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis". Science 350 (6261): 691–4. 2015. doi:10.1126/science.aad0408. PMID 26542574. Bibcode: 2015Sci...350..691L.
- ↑ "S. kawagutii data site". http://web.malab.cn/symka_new.
- ↑ 8.0 8.1 "Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions". BMC Biology 18 (1): 56. 2020. doi:10.1186/s12915-020-00782-8. PMID 32448240.
- ↑ 9.0 9.1 Stephens, Timothy; Ragan, Mark; Bhattacharya, Debashish; Chan, Cheong Xin (2020). Polarella data site. doi:10.14264/uql.2020.222.
- ↑ "Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle". Scientific Reports 6: 39734. 2016. doi:10.1038/srep39734. PMID 28004835. Bibcode: 2016NatSR...639734A.
- ↑ "Reef Genomics Data Site". http://www.reefgenomics.org/.
- ↑ "Info - Cryptophyceae sp. CCMP2293 v1.0". https://genome.jgi.doe.gov/Crypto2293_1/Crypto2293_1.info.html.
- ↑ 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 "Algae". https://genome.jgi.doe.gov/Algae/Algae.info.html.
- ↑ 14.0 14.1 "Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs". Nature 492 (7427): 59–65. December 2012. doi:10.1038/nature11681. PMID 23201678. Bibcode: 2012Natur.492...59C.
- ↑ 15.00 15.01 15.02 15.03 15.04 15.05 15.06 15.07 15.08 15.09 15.10 15.11 15.12 15.13 15.14 15.15 15.16 15.17 15.18 15.19 15.20 15.21 15.22 15.23 15.24 15.25 15.26 15.27 15.28 15.29 15.30 15.31 15.32 15.33 15.34 15.35 "Home | Greenhouse". https://greenhouse.lanl.gov/greenhouse/organisms/.
- ↑ "Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants". Science 335 (6070): 843–7. February 2012. doi:10.1126/science.1213561. PMID 22344442. Bibcode: 2012Sci...335..843P. https://semanticscholar.org/paper/223db16a6596f6a05d19e365c261a7200c956fbc.
- ↑ "Cyanophora Genome Project". http://cyanophora.rutgers.edu/cyanophora/symposium.php.
- ↑ "Analysis of an improved Cyanophora paradoxa genome assembly". DNA Research 26 (4): 289–299. August 2019. doi:10.1093/dnares/dsz009. PMID 31098614.
- ↑ "Cyanophora Genome v2 Project". http://cyanophora.rutgers.edu/cyanophora_v2018.
- ↑ "Info - Asterochloris sp. Cgr/DA1pho v2.0". https://genome.jgi.doe.gov/Astpho2/Astpho2.info.html.
- ↑ "Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes". BMC Genomics 15: 582. July 2014. doi:10.1186/1471-2164-15-582. PMID 25012212.
- ↑ "Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage". Genome Biology 13 (8): R74. August 2012. doi:10.1186/gb-2012-13-8-r74. PMID 22925495.
- ↑ "Phytozome". https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Creinhardtii.
- ↑ 24.0 24.1 24.2 24.3 24.4 24.5 24.6 24.7 "Phytozome". https://phytozome.jgi.doe.gov/pz/portal.html#.
- ↑ "CSI_1228 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_002939045.1.
- ↑ "ASM313072v1 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_003130725.1.
- ↑ "ASM311615v1 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_003116155.1.
- ↑ "The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex". The Plant Cell 22 (9): 2943–55. September 2010. doi:10.1105/tpc.110.076406. PMID 20852019.
- ↑ "ASM102112v1 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_001021125.1/.
- ↑ "Coccomyxa subellipsoidae v2.0 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCF_000258705.1/.
- ↑ "Dsal_v1.0 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_002284615.1/.
- ↑ 32.0 32.1 Hamaji, Takashi; Kawai-Toyooka, Hiroko; Uchimura, Haruka; Suzuki, Masahiro; Noguchi, Hideki; Minakuchi, Yohei; Toyoda, Atsushi; Fujiyama, Asao et al. (2018-03-08). "Anisogamy evolved with a reduced sex-determining region in volvocine green algae" (in En). Communications Biology 1 (1): 17. doi:10.1038/s42003-018-0019-5. ISSN 2399-3642. PMID 30271904.
- ↑ "Info - Micromonas commoda NOUM17 (RCC 299)". https://genome.jgi.doe.gov/MicpuN3v2/MicpuN3v2.info.html.
- ↑ "Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas". Science 324 (5924): 268–72. April 2009. doi:10.1126/science.1167222. PMID 19359590. Bibcode: 2009Sci...324..268W. https://escholarship.org/uc/item/7c83j3jr.
- ↑ 35.0 35.1 "Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas". Science 324 (5924): 268–72. April 2009. doi:10.1126/science.1167222. PMID 19359590. Bibcode: 2009Sci...324..268W. https://semanticscholar.org/paper/8a80cd3476606d1895540024d12c80ea13c60524.
- ↑ "Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production". BMC Genomics 14: 926. December 2013. doi:10.1186/1471-2164-14-926. PMID 24373495.
- ↑ "The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation". Proceedings of the National Academy of Sciences of the United States of America 104 (18): 7705–10. May 2007. doi:10.1073/pnas.0611046104. PMID 17460045. Bibcode: 2007PNAS..104.7705P.
- ↑ "An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies". BMC Genomics 15 (1): 1103. December 2014. doi:10.1186/1471-2164-15-1103. PMID 25494611.
- ↑ "Info - Ostreococcus sp. RCC809". https://genome.jgi.doe.gov/OstRCC809_2/OstRCC809_2.info.html.
- ↑ "Home - Ostreococcus sp. RCC809". https://genome.jgi.doe.gov/OstRCC809_2/OstRCC809_2.home.html.
- ↑ "Picochlorum soloecismus". Genome Announcements 6 (4): e01498–17. January 2018. doi:10.1128/genomeA.01498-17. PMID 29371352.
- ↑ "Genome of the halotolerant green alga Picochlorum sp. reveals strategies for thriving under fluctuating environmental conditions". Environmental Microbiology 17 (2): 412–26. February 2015. doi:10.1111/1462-2920.12541. PMID 24965277. https://semanticscholar.org/paper/d3adb73180a1b89a13bafc29ff0d43d92c03e9ec.
- ↑ "Scenedesmus obliquus Strain DOE0152z". Genome Announcements 5 (32). August 2017. doi:10.1128/genomeA.00617-17. PMID 28798164.
- ↑ "Info - Symbiochloris reticulata Africa extracted metagenome v1.0". https://genome.jgi.doe.gov/SymretAf1/SymretAf1.info.html.
- ↑ "Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri". Science 329 (5988): 223–6. July 2010. doi:10.1126/science.1188800. PMID 20616280. Bibcode: 2010Sci...329..223P.
- ↑ "ASM288719v1 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_002887195.1.
- ↑ "Ctobinv2 - Genome - Assembly - NCBI" (in en). https://www.ncbi.nlm.nih.gov/assembly/GCA_001275005.1/.
- ↑ "Pan genome of the phytoplankton Emiliania underpins its global distribution". Nature 499 (7457): 209–13. July 2013. doi:10.1038/nature12221. PMID 23760476. Bibcode: 2013Natur.499..209..
- ↑ "Info - Pavlovales sp. CCMP2436 v1.0". https://genome.jgi.doe.gov/Pavlov2436_1/Pavlov2436_1.info.html.
- ↑ "Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics". Proceedings of the National Academy of Sciences of the United States of America 108 (11): 4352–7. March 2011. doi:10.1073/pnas.1016106108. PMID 21368207. Bibcode: 2011PNAS..108.4352G.
- ↑ "ASM31002v1 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_000310025.1/.
- ↑ "Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus". Nature 541 (7638): 536–540. January 2017. doi:10.1038/nature20803. PMID 28092920. Bibcode: 2017Natur.541..536M.
- ↑ "Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion". Molecular Plant 7 (2): 323–35. February 2014. doi:10.1093/mp/sst120. PMID 23966634.
- ↑ "ASM187094v1 - Genome - Assembly - NCBI" (in en). https://www.ncbi.nlm.nih.gov/assembly/GCA_001870945.1.
- ↑ "ASM161424v1 - Genome - Assembly - NCBI" (in en). https://www.ncbi.nlm.nih.gov/assembly/GCA_001614245.1#/st.
- ↑ "Info - Ochromonadaceae sp. CCMP2298 v1.0". https://genome.jgi.doe.gov/Ochro2298_1/Ochro2298_1.info.html.
- ↑ "Info - Pelagophyceae sp. CCMP2097 v1.0". https://genome.jgi.doe.gov/Pelago2097_1/Pelago2097_1.info.html.
- ↑ "Phaeodactylum tricornutum (ID 418) - Genome - NCBI" (in en). https://www.ncbi.nlm.nih.gov/genome/?term=phaeodactylum%20tricornutum.
- ↑ "Info - Pseudo-nitzschia multiseries CLN-47". https://genome.jgi.doe.gov/Psemu1/Psemu1.info.html.
- ↑ "SJ6.1 - Genome - Assembly - NCBI" (in en). https://www.ncbi.nlm.nih.gov/assembly/GCA_000978595.1/.
- ↑ Jiang, Zhigang; Liu, Shaoying; Wu, Yi; Jiang, Xuelong; Zhou, Kaiya (2017). "China's mammal diversity (2nd edition)". Biodiversity Science 25 (8): 886–895. doi:10.17520/biods.2017098.
- ↑ "ASM14940v2 - Genome - Assembly - NCBI" (in en). https://www.ncbi.nlm.nih.gov/assembly/GCF_000149405.2/.
- ↑ "A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae". BMC Biology 5: 28. July 2007. doi:10.1186/1741-7007-5-28. PMID 17623057.
- ↑ "ASM170485v1 - Genome - Assembly - NCBI" (in en). https://www.ncbi.nlm.nih.gov/assembly/GCA_001704855.1/.
- ↑ "Analysis of the draft genome of the red seaweed Gracilariopsis chorda provides insights into genome size evolution in Rhodophyta". Molecular Biology and Evolution 35 (8): 1869–1886. 2018-04-23. doi:10.1093/molbev/msy081. PMID 29688518.
- ↑ "Genome of the red alga Porphyridium purpureum". Nature Communications 4 (1): 1941. 2013-06-17. doi:10.1038/ncomms2931. PMID 23770768. Bibcode: 2013NatCo...4.1941B.
- ↑ "Porphyra umbilicalis (Bangiophyceae, Rhodophyta)". Proceedings of the National Academy of Sciences of the United States of America 114 (31): E6361–E6370. August 2017. doi:10.1073/pnas.1703088114. PMID 28716924.
- ↑ "The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis)". PLOS ONE 8 (3): e57122. 2013-03-11. doi:10.1371/journal.pone.0057122. PMID 23536760. Bibcode: 2013PLoSO...857122N.