Biology:List of sequenced protist genomes
This list of sequenced protist genomes contains all the protist species known to have publicly available complete genome sequences that have been assembled, annotated and published; draft genomes are not included, nor are organelle only sequences.
Alveolata
Alveolata are a group of protists which includes the Ciliophora, Apicomplexa and Dinoflagellata. Members of this group are of particular interest to science as the cause of serious human and livestock diseases.
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status | Links |
---|---|---|---|---|---|---|---|---|
Babesia bovis | Apicomplexan | Cattle pathogen | 8.2 Mb | 3,671 | 2007[1] | |||
Breviolum minutim (Symbiodinium minutum; clade B1) | Dinoflagellate | Coral symbiont | 1.5 Gb | 47,014 | Okinawa Institute of Science and Technology | 2013[2] | Draft | OIST Marine Genomics[3] |
Cladocopium goreaui (Symbiodinium goreaui; Clade C1) | Dinoflagellate | Coral symbiont | 1.19 Gb | 35,913 | Reef Future Genomics (ReFuGe) 2020/ University of Queensland | 2018[4] | Draft | ReFuGe 2020[5] |
Cladocopium C92 strain Y103 (Symbiodinium sp. clade C; putative type C92) | Dinoflagellate | Foraminiferan symbiont | Unknown (assembly size 0.70 Gb) | 65,832 | Okinawa Institute of Science and Technology | 2018[6] | Draft | OIST Marine Genomics[3] |
Cryptosporidium hominis Strain:TU502 |
Apicomplexan | Human pathogen | 10.4 Mb | 3,994[7] | Virginia Commonwealth University | 2004[7] | ||
Cryptosporidium parvum C- or genotype 2 isolate |
Apicomplexan | Human pathogen | 16.5 Mb | 3,807[8] | UCSF and University of Minnesota | 2004[8] | ||
Eimeria tenella Houghton strain |
Apicomplexan | Intestinal parasite of domestic fowl | 55-60 Mb[9] | The Wellcome Trust Sanger Institute[10] | Available for download;[10] 2007 for Chr 1[11] | |||
Fugacium kawagutii CS156=CCMP2468 (Symbiodinium kawagutii; clade F1) | Dinoflagellate | Coral symbiont? | 1.07 Gb | 26,609 | Reef Future Genomics (ReFuGe) 2020 / University of Queensland | 2018[4] | Draft | ReFuGe 2020[5] |
Fugacium kawagutii CCMP2468 (Symbiodinium kawagutii; clade F1) | Dinoflagellate | Coral symbiont? | 1.18 Gb | 36,850 | University of Connecticut / Xiamen University | 2015[12] | Draft | S. kawagutii genome project[13] |
Neospora caninum | Apicomplexan | Pathogen for cattle and dogs | 62 Mb[14] | The Wellcome Trust Sanger Institute[15] | Available for download[15] | |||
Paramecium tetraurelia | Ciliate | Model organism | 72 Mb | 39,642[16] | Genoscope | 2006[16] | ||
Polarella glacialis CCMP1383 | Dinoflagellate | Psychrophile, Antarctic | 3.02 Gb (diploid), 1.48 Gbp (haploid) | 58,232 | University of Queensland | 2020[17] | Draft | UQ eSpace[18] |
Polarella glacialis CCMP2088 | Dinoflagellate | Psychrophile, Arctic | 2.65 Gb (diploid), 1.30 Gbp (haploid) | 51,713 | University of Queensland | 2020[17] | Draft | UQ eSpace[18] |
Plasmodium berghei ANKA | Apicomplexan | Rabbit malaria | 18.5 Mb[19] | 4,900;[19] 11,654 (UniProt) | ||||
Plasmodium chabaudi | Apicomplexan | Rodent malaria | 19.8 Mb[20] | 5,000[20] | ||||
Plasmodium falciparum Clone:3D7 |
Apicomplexan | Human pathogen (malaria) | 22.9 Mb | 5,268[21] | Malaria Genome Project Consortium | 2002[21] | ||
Plasmodium knowlesi | Apicomplexan | Primate pathogen (malaria) | 23.5 Mb | 5,188[22] | 2008[22] | |||
Plasmodium vivax | Apicomplexan | Human pathogen (malaria) | 26.8 Mb | 5,433[23] | 2008[23] | |||
Plasmodium yoelii yoelii Strain:17XNL |
Apicomplexan | Rodent pathogen (malaria) | 23.1 Mb | 5,878[24] | TIGR and NMRC | 2002[24] | ||
Symbiodinium microadriaticum (clade A) | Dinoflagellate | Coral symbiont | 1.1 Gb | 49,109 | King Abdullah University of Science and Technology | 2016[25] | Draft | Reef Genomics[26] |
Symbiodinium A3 strain Y106 (Symbiodinium sp. clade A3) | Dinoflagellate | symbiont | Unknown (assembly size 0.77 Gb) | 69,018 | Okinawa Institute of Science and Technology | 2018[6] | Draft | OIST Marine Genomics[3] |
Tetrahymena thermophila | Ciliate | Model organism | 104 Mb | 27,000[27] | 2006[27] | |||
Theileria annulata Ankara clone C9 |
Apicomplexan | Cattle pathogen | 8.3 Mb | 3,792 | Sanger | 2005[28] | ||
Theileria parva Strain:Muguga |
Apicomplexan | Cattle pathogen (African east coast fever) | 8.3 Mb | 4,035[29] | TIGR and the International Livestock Research Institute | 2005[29] | ||
Toxoplasma gondii GT1, ME49, VEG strains |
Apicomplexan | Mammal pathogen | 63 Mb (RefSeq) | 8,100 (UniProt) - 9,000 (EuPathDB) | J. Craig Venter Inst., TIGR, UPenn. | 2008[30] |
Amoebozoa
Amoebozoa are a group of motile amoeboid protists, members of this group move or feed by means of temporary projections, called pseudopods. The best known member of this group is the slime mold, which has been studied for centuries; other members include the Archamoebae, Tubulinea and Flabellinia. Some Amoeboza cause disease.
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Dictyostelium discoideum Strain:AX4 |
Slime mold | Model organism | 34 Mb | 12,500[31] | Consortium from University of Cologne, Baylor College of Medicine and the Sanger Centre | 2005[31] |
Entamoeba histolytica HM1:IMSS |
Parasitic protozoan | Human pathogen (amoebic dysentery) | 23.8 Mb | 9,938[32] | TIGR, Sanger Institute and the London School of Hygiene and Tropical Medicine | 2005[32] |
Polysphondylium pallidum Strain:PN500 |
Slime mold | Model organism | 12,939,[33] 12,350 (UniProt) | Leibniz Institute for Age Research | 2009[33] |
Chromista
The Chromista are a group of protists that contains the algal phyla Heterokontophyta (stramenopiles), Haptophyta and Cryptophyta. Members of this group are mostly studied for evolutionary interest.
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Albugo laibachii | Oomycete | Arabidopsis parasite, biotroph | 37 Mb[34] | 13,032[34] | 2011[34] | |
Aureococcus anophagefferens Strain:CCMP1984 |
Pelagophyte | DOE Joint Genome Institute | 2011[35] | |||
Bigelowiella natans | Chlorarachniophyte | Model organism | nucleomorph: 0.331 Mb nuclear: 95 Mb |
nucleomorph: 373[36] nuclear: >21,000[37] |
nucleomorph: Hall Institute Australia, Univ. Melbourne, Univ. BC nuclear: Dalhousie University, Halifax, Nova Scotia, Canada |
2006,[36] 2012[37] |
Chroomonas mesostigmatica CCMP1168 | Cryptophyta | 2012[38] | ||||
Cryptomonas paramecium | Cryptophyta | 2010[39] | ||||
Emiliania huxleyi CCMP1516 |
Coccolithophore (phytoplankton) | 141.7 Mb[40] | 30,569[40] | Joint Genome Institute | 2013[40] | |
Emiliania huxleyi RCC1217 |
Coccolithophore (phytoplankton) | Available for download[41] | ||||
Fragilariopsis cylindrus | Diatom | 61.1 Mb[42] | 21,066[42] | Joint Genome Institute | 2017[42] | |
Guillardia theta | Cryptomonad | Model organism | 0.551 Mb (nucleomorph genome only) 87 Mb (nuclear genome) |
nucleomorph: 465[43] 513, 598 (UniProt) nuclear: >21,000[37] |
nucleomorph: Canadian Institute of Advanced Research, Philipps-University Marburg and the University of British Columbia nuclear: Dalhousie University, Halifax, Nova Scotia, Canada |
2001,[43] 2012[37] |
Hemiselmis andersenii CCMP7644 |
Cryptomonad | Model organism | 0.572 Mb (nucleomorph genome only) |
472,[44] 502 (UniProt) | Canadian Institute of Advanced Research | 2007[44] |
Hyaloperonospora arabidopsidis | Oomycete | obligate biotroph, Arabidopsis pathogen | WUGSC | 2010[45] | ||
Nannochloropis gaditana Strain: CCMP526 |
Eustigmatophyte | Lipid-producing, biotechnology applications | Virginia Bioinformatics Institute | 2012[46] | ||
Phaeodactylum tricornutum Strain: CCAP1055/1 |
Diatom | 27.4 Mb | 10,402 | Joint Genome Institute | 2008[47] | |
Phytophthora infestans Strain:T30-4 |
Oomycete | Great Famine of Ireland pathogen | Broad Institute | 2009[48] | ||
Phytophthora ramorum | Oomycete | Sudden oak death pathogen | 65 Mb (7x) | 15,743 | Joint Genome Institute et al. | 2006[49] |
Phytophthora sojae | Oomycete | Soybean pathogen | 95 Mb (9x) | 19,027 | Joint Genome Institute et al. | 2006[49] |
Pseudo-nitzschia multiseries | Diatom | Joint Genome Institute | ||||
Plasmodiophora brassicae | Plasmodiophorid | Clubroot disease pathogen | 25.5 Mb | 9,730 | SLU Uppsala et al. | 2015[50] |
Pythium ultimum | Oomycete | ubiquitous plant pathogen | 42.8 Mb | 15,290 | Michigan State University et al. | 2010[51] |
Thalassiosira pseudonana Strain:CCMP 1335 |
Diatom | 34.5 Mb | 11,242[52] | Joint Genome Institute and the University of Washington | 2004[52] |
Excavata
Excavata is a group of related free living and symbiotic protists; it includes the Metamonada, Loukozoa, Euglenozoa and Percolozoa. They are researched for their role in human disease.
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Giardia enterica (G. duodenalis assemblage B) | Parasitic protozoan | Human pathogen (Giardiasis) | 11.7 Mb | 4,470[53] | multicenter collaboration | 2009[53] |
Giardia duodenalis ATCC 50803 (Giardia duodenalis assemblage A) |
Parasitic protozoan | Human pathogen (Giardiasis) | 11.7 Mb | 6,470,[54] 7,153 (UniProt) | Karolinska Institutet, Marine Biological Laboratory | 2007[54] |
Leishmania braziliensis MHOM/BR/75M2904 |
Parasitic protozoan | Human pathogen (Leishmaniasis) | 33 Mb | 8,314[55] | Sanger Institute, Universidade de São Paulo, Imperial College | 2007[55] |
Leishmania infantum JPCM5 |
Parasitic protozoan | Human pathogen (Visceral leishmaniasis) | 33 Mb | 8,195[55] | Sanger Institute, Imperial College and University of Glasgow | 2007[55] |
Leishmania major Strain:Friedlin |
Parasitic protozoan | Human pathogen (Cutaneous leishmaniasis) | 32.8 Mb | 8,272[56] | Sanger Institute and Seattle Biomedical Research Institute | 2005[56] |
Naegleria gruberi | amoeboflagellate | Diverged from other eukaryotes over 1 billion years ago | 41 Mb[57] | 15,727[57] | 2010[57] | |
Trichomonas vaginalis | Parasitic protozoan | Human pathogen (Trichomoniasis) | 160 Mb | 59,681[58] | TIGR | 2007[58] |
Trypanosoma brucei Strain:TREU927/4 GUTat10.1 |
Parasitic protozoan | Human pathogen (Sleeping sickness) | 26 Mb | 9,068[59] | Sanger Institute and TIGR | 2005[59] |
Trypanosoma cruzi Strain:CL Brener TC3 |
Parasitic protozoan | Human pathogen (Chagas disease) | 34 Mb | 22,570[60] | TIGR, Seattle Biomedical Research Institute and Uppsala University | 2005[60] |
Opisthokonts, basal
Opisthokonts are a group of eukaryotes that include both animals and fungi as well as basal groups that are not classified in these groups. These basal opisthokonts are reasonably categorized as protists and include choanoflagellates, which are the sister or near-sister group of animals.
Organism | Type | Relevance | Genome size | Number of genes predicted | Organization | Year of completion |
---|---|---|---|---|---|---|
Monosiga brevicollis | Choanoflagellate | close relative of metazoans | 41.6 Mb | 9,200[61] | Joint Genome Institute | 2007[61] |
See also
- List of sequenced bacterial genomes
- List of sequenced animal genomes
- List of sequenced eukaryotic genomes
- List of sequenced fungi genomes
- List of sequenced plant genomes
- List of sequenced algae genomes
References
- ↑ "Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa". PLOS Pathogens 3 (10): 1401–13. October 2007. doi:10.1371/journal.ppat.0030148. PMID 17953480.
- ↑ "Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure". Current Biology 23 (15): 1399–408. August 2013. doi:10.1016/j.cub.2013.05.062. PMID 23850284.
- ↑ 3.0 3.1 3.2 "OIST Marine Genomics". http://marinegenomics.oist.jp/gallery/.
- ↑ 4.0 4.1 "Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis". Communications Biology 1: 95. 2018. doi:10.1038/s42003-018-0098-3. PMID 30271976.
- ↑ 5.0 5.1 "ReFuGe 2020 Data Site". http://refuge2020.reefgenomics.org.
- ↑ 6.0 6.1 "Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes". BMC Genomics 19 (1): 458. June 2018. doi:10.1186/s12864-018-4857-9. PMID 29898658.
- ↑ 7.0 7.1 "The genome of Cryptosporidium hominis". Nature 431 (7012): 1107–12. October 2004. doi:10.1038/nature02977. PMID 15510150. Bibcode: 2004Natur.431.1107X.
- ↑ 8.0 8.1 "Complete genome sequence of the apicomplexan, Cryptosporidium parvum". Science 304 (5669): 441–5. April 2004. doi:10.1126/science.1094786. PMID 15044751. Bibcode: 2004Sci...304..441A.
- ↑ genedb
- ↑ 10.0 10.1 Sanger
- ↑ "Sequencing and analysis of chromosome 1 of Eimeria tenella reveals a unique segmental organization". Genome Research 17 (3): 311–9. March 2007. doi:10.1101/gr.5823007. PMID 17284678.
- ↑ "The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis". Science 350 (6261): 691–4. November 2015. doi:10.1126/science.aad0408. PMID 26542574. Bibcode: 2015Sci...350..691L.
- ↑ "S. kawagutii data site". http://web.malab.cn/symka_new.
- ↑ genedb
- ↑ 15.0 15.1 Sanger
- ↑ 16.0 16.1 "Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia". Nature 444 (7116): 171–8. November 2006. doi:10.1038/nature05230. PMID 17086204. Bibcode: 2006Natur.444..171A.
- ↑ 17.0 17.1 "Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions". BMC Biology 18 (1): 56. 2020. doi:10.1186/s12915-020-00782-8. PMID 32448240.
- ↑ 18.0 18.1 Stephens, Timothy; Ragan, Mark; Bhattacharya, Debashish; Chan, Cheong Xin (2020). Polarella data site. doi:10.14264/uql.2020.222.
- ↑ 19.0 19.1 Ensembl entry
- ↑ 20.0 20.1 Ensembl entry
- ↑ 21.0 21.1 "Genome sequence of the human malaria parasite Plasmodium falciparum". Nature 419 (6906): 498–511. October 2002. doi:10.1038/nature01097. PMID 12368864. Bibcode: 2002Natur.419..498G.
- ↑ 22.0 22.1 "The genome of the simian and human malaria parasite Plasmodium knowlesi". Nature 455 (7214): 799–803. October 2008. doi:10.1038/nature07306. PMID 18843368. Bibcode: 2008Natur.455..799P.
- ↑ 23.0 23.1 "Comparative genomics of the neglected human malaria parasite Plasmodium vivax". Nature 455 (7214): 757–63. October 2008. doi:10.1038/nature07327. PMID 18843361. Bibcode: 2008Natur.455..757C.
- ↑ 24.0 24.1 "Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii". Nature 419 (6906): 512–9. October 2002. doi:10.1038/nature01099. PMID 12368865. Bibcode: 2002Natur.419..512C.
- ↑ "Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle". Scientific Reports 6: 39734. December 2016. doi:10.1038/srep39734. PMID 28004835. Bibcode: 2016NatSR...639734A.
- ↑ "Reef Genomics Data Site". http://www.reefgenomics.org/.
- ↑ 27.0 27.1 "Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote". PLOS Biology 4 (9): e286. September 2006. doi:10.1371/journal.pbio.0040286. PMID 16933976.
- ↑ "Genome of the host-cell transforming parasite Theileria annulata compared with T. parva". Science 309 (5731): 131–3. July 2005. doi:10.1126/science.1110418. PMID 15994557. Bibcode: 2005Sci...309..131P.
- ↑ 29.0 29.1 "Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes". Science 309 (5731): 134–7. July 2005. doi:10.1126/science.1110439. PMID 15994558. Bibcode: 2005Sci...309..134G.
- ↑ NCBI Genome T. gondii ME49
- ↑ 31.0 31.1 "The genome of the social amoeba Dictyostelium discoideum". Nature 435 (7038): 43–57. May 2005. doi:10.1038/nature03481. PMID 15875012. Bibcode: 2005Natur.435...43E.
- ↑ 32.0 32.1 "The genome of the protist parasite Entamoeba histolytica". Nature 433 (7028): 865–8. February 2005. doi:10.1038/nature03291. PMID 15729342. Bibcode: 2005Natur.433..865L. https://researchonline.lshtm.ac.uk/13878/1/Loftus-etal-The-genome-of-the-protist-parasite-Entamoeba-histolytica.pdf.
- ↑ 33.0 33.1 NCBI accession
- ↑ 34.0 34.1 34.2 Ausubel, Frederick M, ed (July 2011). "Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana". PLOS Biology 9 (7): e1001094. doi:10.1371/journal.pbio.1001094. PMID 21750662.
- ↑ "Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics". Proceedings of the National Academy of Sciences of the United States of America 108 (11): 4352–7. March 2011. doi:10.1073/pnas.1016106108. PMID 21368207. Bibcode: 2011PNAS..108.4352G.
- ↑ 36.0 36.1 "Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus". Proceedings of the National Academy of Sciences of the United States of America 103 (25): 9566–71. June 2006. doi:10.1073/pnas.0600707103. PMID 16760254. Bibcode: 2006PNAS..103.9566G.
- ↑ 37.0 37.1 37.2 37.3 "Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs". Nature 492 (7427): 59–65. December 2012. doi:10.1038/nature11681. PMID 23201678. Bibcode: 2012Natur.492...59C.
- ↑ "Nucleomorph genome sequence of the cryptophyte alga Chroomonas mesostigmatica CCMP1168 reveals lineage-specific gene loss and genome complexity". Genome Biology and Evolution 4 (11): 1162–75. 2012. doi:10.1093/gbe/evs090. PMID 23042551.
- ↑ "Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set". Genome Biology and Evolution 3: 44–54. 2012. doi:10.1093/gbe/evq082. PMID 21147880.
- ↑ 40.0 40.1 40.2 "Pan genome of the phytoplankton Emiliania underpins its global distribution" (in En). Nature 499 (7457): 209–13. July 2013. doi:10.1038/nature12221. PMID 23760476. Bibcode: 2013Natur.499..209..
- ↑ Entry
- ↑ 42.0 42.1 42.2 "Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus" (in En). Nature 541 (7638): 536–540. January 2017. doi:10.1038/nature20803. PMID 28092920. Bibcode: 2017Natur.541..536M.
- ↑ 43.0 43.1 "The highly reduced genome of an enslaved algal nucleus". Nature 410 (6832): 1091–6. April 2001. doi:10.1038/35074092. PMID 11323671. Bibcode: 2001Natur.410.1091D.
- ↑ 44.0 44.1 "Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function". Proceedings of the National Academy of Sciences of the United States of America 104 (50): 19908–13. December 2007. doi:10.1073/pnas.0707419104. PMID 18077423. Bibcode: 2007PNAS..10419908L.
- ↑ "Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome". Science 330 (6010): 1549–1551. December 2010. doi:10.1126/science.1195203. PMID 21148394. Bibcode: 2010Sci...330.1549B.
- ↑ "Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana". Nature Communications 3 (2): 686. February 2012. doi:10.1038/ncomms1688. PMID 22353717. Bibcode: 2012NatCo...3..686R.
- ↑ "The Phaeodactylum genome reveals the evolutionary history of diatom genomes". Nature 456 (7219): 239–44. November 2008. doi:10.1038/nature07410. PMID 18923393. Bibcode: 2008Natur.456..239B. https://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=1644&context=gsofacpubs.
- ↑ "Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans". Nature 461 (7262): 393–8. September 2009. doi:10.1038/nature08358. PMID 19741609. Bibcode: 2009Natur.461..393H. http://wrap.warwick.ac.uk/62453/1/WRAP_Jones_nature08358.pdf.
- ↑ 49.0 49.1 "Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis". Science 313 (5791): 1261–6. September 2006. doi:10.1126/science.1128796. PMID 16946064. Bibcode: 2006Sci...313.1261T.
- ↑ "The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases". Scientific Reports 5: 11153. June 2015. doi:10.1038/srep11153. PMID 26084520. Bibcode: 2015NatSR...511153S.
- ↑ "Pediatric atopic dermatitis: a review of the medical management". The Annals of Pharmacotherapy 44 (9): 1448–58. September 2010. doi:10.1345/aph.1P098. PMID 20628042.
- ↑ 52.0 52.1 "The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism". Science 306 (5693): 79–86. October 2004. doi:10.1126/science.1101156. PMID 15459382. Bibcode: 2004Sci...306...79A.
- ↑ 53.0 53.1 Petri, William, ed (August 2009). "Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species?". PLOS Pathogens 5 (8): e1000560. doi:10.1371/journal.ppat.1000560. PMID 19696920.
- ↑ 54.0 54.1 "Genomic minimalism in the early diverging intestinal parasite Giardia lamblia". Science 317 (5846): 1921–6. September 2007. doi:10.1126/science.1143837. PMID 17901334. Bibcode: 2007Sci...317.1921M.
- ↑ 55.0 55.1 55.2 55.3 "Comparative genomic analysis of three Leishmania species that cause diverse human disease". Nature Genetics 39 (7): 839–47. July 2007. doi:10.1038/ng2053. PMID 17572675.
- ↑ 56.0 56.1 "The genome of the kinetoplastid parasite, Leishmania major". Science 309 (5733): 436–42. July 2005. doi:10.1126/science.1112680. PMID 16020728. Bibcode: 2005Sci...309..436I.
- ↑ 57.0 57.1 57.2 "The genome of Naegleria gruberi illuminates early eukaryotic versatility". Cell 140 (5): 631–42. March 2010. doi:10.1016/j.cell.2010.01.032. PMID 20211133. https://digital.library.unt.edu/ark:/67531/metadc1012142/.
- ↑ 58.0 58.1 "Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis". Science 315 (5809): 207–12. January 2007. doi:10.1126/science.1132894. PMID 17218520. Bibcode: 2007Sci...315..207C.
- ↑ 59.0 59.1 "The genome of the African trypanosome Trypanosoma brucei". Science 309 (5733): 416–22. July 2005. doi:10.1126/science.1112642. PMID 16020726. Bibcode: 2005Sci...309..416B.
- ↑ 60.0 60.1 "The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease". Science 309 (5733): 409–15. July 2005. doi:10.1126/science.1112631. PMID 16020725. Bibcode: 2005Sci...309..409E. http://sgc.anlis.gob.ar/handle/123456789/381.
- ↑ 61.0 61.1 "The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans". Nature 451 (7180): 783–8. February 2008. doi:10.1038/nature06617. PMID 18273011. Bibcode: 2008Natur.451..783K.
Original source: https://en.wikipedia.org/wiki/List of sequenced protist genomes.
Read more |