Biology:List of sequenced plant genomes
This list of sequenced plant genomes contains plant species known to have publicly available complete genome sequences that have been assembled, annotated and published. Unassembled genomes are not included, nor are organelle only sequences. For all kingdoms, see the list of sequenced genomes.
See also List of sequenced algae genomes.
Bryophytes
Organism strain | Division | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Anthoceros angustus | Bryophytes | Early diverging land plant | |||||
Ceratodon purpureus | Bryophytes | Early diverging land plant | |||||
Fontinalis antipyretica (greater water-moss) | Bryophytes | Aquatic moss | 385.2 Mbp | 16,538 | BGI | 2020[1] | BGISEQ-500 & 10X, scaffold N50 45.8 Kbp |
Marchantia polymorpha | Bryophytes | Early diverging land plant | 225.8 Mb | 19,138 | 2017[2] | ||
Physcomitrella patens ssp. patens str. Gransden 2004 | Bryophytes | Early diverging land plant | 462.3 Mbp | 35,938 | 2008[3] | ||
Pleurozium schreberi (feather moss) | Bryophytes | Ubiquitous moss species | 318 Mbp | 15,992 | 2019[4] |
Vascular plants
Lycophytes
Organism strain | Division | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Selaginella moellendorffii | Lycopodiophyta | Model organism | 106 Mb | 22,285 | 2011[5][6] | scaffold N50 = 1.7 Mb | |
Selaginella lepidophylla | Lycopodiophyta | Desiccation tolerance | 122 Mb | 27,204 | 2018[7] | contig N50 = 163 kb |
Ferns
Organism strain | Division | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Azolla filiculoides | Polypodiophyta | Fern | 0.75 Gb | 20,201 | 2018[8] | ||
Salvinia cucullata | Polypodiophyta | Fern | 0.26 Gb | 19,914 | 2018[8] | ||
Ceratopteris richardii | Polypodiophyta | Model organism | 7.5 Gb | 36,857 | 2019 (v1.1),[9] 2021 (v2.1)[10] | Partial assembly consisting of 7.5 Gb/11.2 Gb, arranged in 39 chromosomes | |
Alsophila spinulosa | Polypodiophyta | Tree Fern | 6.23 Gb | 67,831 | 2022[11] |
Gymnosperms
Organism strain | Division | Relevance | Genome size | Number of genes predicted | No of chromosomes | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|---|
Cycas panzhihuaensis (Dukou sago palm) | Cycadophyta | Rare and vulnerable species of cycad | 10.5 Gb | 2022[12] | ||||
Picea abies (Norway spruce) | Pinales | Timber, tonewood, ornamental such as Christmas tree | 19.6 Gb | 26,359[13] | 12 | Umeå Plant Science Centre / SciLifeLab, Sweden | 2013[14] | |
Picea glauca (White spruce) | Pinales | Timber, Pulp | 20.8 Gb | 14,462[13] | 12 | Institutional Collaboration | 2013[15][16] | |
Pinus taeda (Loblolly pine) | Pinales | Timber | 20.15 Gb | 9,024[13] | 12 | 2014[17][18][19] | N50 scaffold size: 66.9 kbp | |
Pinus lambertiana (Sugar pine) | Pinales | Timber; with the largest genomes among the pines;
the largest pine species |
31 Gb | 13,936 | 12 | 2016[13] | 61.5X sequence coverage, platforms used:
Hiseq 2000, Hiseq 2500, GAIIx, MiSeq | |
Ginkgo biloba | Ginkgoales | 11.75 Gb | 41,840 | 2016[20] | N50 scaffold size: 48.2 kbp | |||
Pseudotsuga menziesii | Pinales | 16 Gb | 54,830 | 13 | 2017[21] | N50 scaffold size : 340.7 kbp | ||
Gnetum monatum | Gnetales | 4.07 Gb | 27,491 | 2018[22] | ||||
Larix sibirica | Pinales | 12.34 Gbp | 2019[23] | scaffold N50 of 6440 bp | ||||
Abies alba | Pinales | 18.16 Gb | 94,205 | 2019[24] | scaffold N50 of 14,051 bp |
Angiosperms
Amborellales
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Amborella trichopoda | Amborellaceae | Basal angiosperm | 2013[25][26] |
Chlorantales
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Chloranthus spicatus (Thunb.) Makino,[27] (Pearl Orchid) | Chlorantaceae | 2021[28] | saffold N50 of 191.37 Mb |
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Annona muricata | Annonaceae | Commercially grown fruit, medicinal applications | 799.11 Mb | 23,375 | Institute for Biodiversity and Environmental Research (UBD)
Alliance for Conservation Tree Genomics Biodiversity Genomics Team |
2021[29] | PacBio and Illumina short‐reads, in combination with 10× Genomics and Bionano data (v1). A total of 949 scaffolds assembled to a final size of 656.77 Mb, with a scaffold N50 of 3.43 Mb (v1), and then further improved to seven pseudo‐chromosomes using Hi‐C sequencing data (v2; scaffold N50: 93.2 Mb, total size in chromosomes: 639.6 Mb). |
Chosenia arbutifolia (Pall.) A. Skv | Salicaceae | Seriously endangered relic species | 338.93 Mb | 33,229 | 2022[30] | Contig N50 of 1.68 Mb | |
Cinnamomum kanehirae (Stout camphor tree) | Lauraceae | 730.7 Mb | 2019[31] |
Eudicots
Proteales
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Macadamia integrifolia HAES 741 (Macadamia nut) | Proteaceae | Commercially grown nut | 745 Mb | 34,274 | 2020[32] | N50 413 kb | |
Macadamia jansenii | Proteaceae | Rare relative of macademia nut | 750 Mbp | 2020[33] | Compared Nanopore, Illumina and BGI stLRF data | ||
Nelumbo nucifera (sacred lotus) | Nelumbonaceae | Basal eudicot | 929 Mbp | 2013[34] | contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp |
Ranunculales
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Aquilegia coerulea | Ranunculaceae | Basal eudicot | Unpublished[35] |
Trochodendrales
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Trochodendron aralioides (Wheel tree) | Trochodendrales | Basal eudicot having secondary xylem without vessel elements | 1.614 Gb | 35,328 | Guangxi University | 2019[36] | 19 scaffolds corresponding to 19 chromosomes |
Caryophyllales
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Beta vulgaris (sugar beet) | Chenopodiaceae | Crop plant | 714–758 Mbp | 27,421 | 2013[37] | ||
Chenopodium quinoa | Chenopodiaceae | Crop plant | 1.39–1.50 Gb | 44,776 | 2017[38] | 3,486 scaffolds, scaffold N50 of 3.84 Mb, 90% of the assembled genome is contained in 439 scaffolds[38] | |
Amaranthus hypocondriacus | Amaranthaceae | Crop plant | 403.9 Mb | 23,847 | 16 large scaffolds from 16.9 to 38.1 Mb. N50 and L50 of the assembly was 24.4 Mb and 7, respectively.[39] | ||
Carnegiea gigantea | Cactaceae | Wild plant | 1.40 Gb | 28,292 | 2017[40] | 57,409 scaffolds, scaffold N50 of 61.5 kb[40] | |
Suaeda aralocaspica | Amaranthaceae | Performs complete C4 photosynthesis within individual cells (SCC4) | 467 Mb | 29,604 | ABLife Inc. | 2019[41] | 4,033 scaffolds, scaffold N50 length of 1.83 Mb |
Simmondsia chinensis (jojoba) | Simmondsiaceae | Oilseed Crop | 887 Mb | 23,490 | 2020[42] | 994 scaffolds, scaffold N50 length of 5.2 Mb | |
Drosera capensis |
Droseraceae | Carnivorous Plant | 263.79 Mb | 2016[43] | 12,713 scaffolds[43] |
Rosids
Organism strain | Family | Relevance | Genome size | Number of genes predicted | No of chromosomes | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|---|
Bretschneidera sinensis | Akaniaceae | endangered relic tree species | 1.21 Gb | 45,839 | 2022[44] | |||
Sclerocarya birrea
(Marula) |
Anacardiaceae | Used for food | 18,397 | 2018[45][46] | ||||
Betula pendula (silver birch) | Betulaceae | Boreal forest tree, model for forest biotechnology | 435 Mbp[47] | 28,399 | 14 | University of Helsinki | 2017[47] | 454/Illumina/PacBio. Assembly size 435 Mbp. Contig N50: 48,209 bp, scaffold N50: 239,796 bp. 89% of the assembly mapped to 14 pseudomolecules. Additionally 150 birch individuals sequenced. |
Betula platyphylla (Japanese white birch) | Betulaceae | Pioneer hardwood tree species | 430 Mbp | 2021[48] | contig N50 = 751 kbp | |||
Betula nana (dwarf birch) | Betulaceae | Arctic shrub | 450 Mbp | QMUL/SBCS | 2013[49] | |||
Corylus heterophylla Fisch (Asian hazel) | Betulaceae | Nut tree used for food | 370.75 Mbp | 27,591 | 11 | 2021[50] | Nanopore/Hi-C chromosome scale. Contig N50 and scaffold N50 sizes of 2.07 and 31.33 Mb, respectively | |
Corylus mandshurica | Betulaceae | Hazel used for breeding | 367.67 Mb | 28,409 | 11 | 2021[51] | ||
Aethionema arabicum | Brassicaceae | Comparative analysis of crucifer genomes | 2013[52] | |||||
Arabidopsis lyrata ssp. lyrata strain MN47 | Brassicaceae | Model plant | 206.7 Mbp | 32,670[53] | 8 | 2011[53] | 8.3X sequence coverage, analyzed on ABI 3730XL capillary sequencers | |
Arabidopsis thaliana Ecotype:Columbia | Brassicaceae | Model plant | 135 Mbp | 27,655[54] | 5 | AGI | 2000[55] | |
Barbarea vulgaris
G-type |
Brassicaceae | Model plant for specialised metabolites and plant defenses | 167.7 Mbp | 25,350 | 8 | 2017[56] | 66.5 X coverage with Illumina GA II technology | |
Brassica rapa ssp. pekinensis (Chinese cabbage) accession Chiifu-401-42 | Brassicaceae | Assorted crops and model organism | 485 Mbp | 41,174 (has undergone genome triplication) | 10 | The Brassica rapa Genome Sequencing Project Consortium | 2011[57] | 72X coverage of paired short read sequences generated by Illumina GA II technology |
Brassica napus (Oilseed rape or rapeseed) European winter oilseed cultivar 'Darmor-bzh' | Brassicaceae | Crops | 1130 Mbp | 101,040 | 19 | Institutional Collaboration | 2014[58] | 454 GS-FLX+ Titanium (Roche, Basel, Switzerland) and Sanger sequencing. Correction and gap filling used 79 Gb of Illumina (San Diego, CA) HiSeq sequence. |
Capsella rubella | Brassicaceae | Close relative of Arabidopsis thaliana | 130 Mbp | 26,521 | JGI | 2013?[59] 2013[60] | ||
Cardamine hirsuta (hairy bittercress) strain 'Oxford' | Brassicaceae | A model system for studies in evolution of plant development | 198 Mbp | 29,458 | 8 | Max Planck Institute for Plant Breeding Research, Köln, Germany | 2016[61] | Shotgun sequencing strategy, combining paired end reads (197× assembled sequence coverage) and mate pair reads (66× assembled) from Illumina HiSeq (a total of 52 Gbp raw reads). |
Eruca sativa (salad rocket) | Brassicaceae | Used for food | 851 Mbp | 45,438 | University of Reading | 2020[62] | Illumina MiSeq and HiSeq2500. PCR free paired end and long mate pair sequencing and assembly. Illumina HiSeq transcriptome sequencing (125/150 bp paired end reads). | |
Erysimum cheiranthoides (wormseed wallflower) strain 'Elbtalaue' | Brassicaceae | Model plant for studying defensive chemistry, including cardiac glycosides | 175 Mbp | 29,947 | 8 | Boyce Thompson Institute, Ithaca, NY | 2020[63][64] | 39.5 Gb PacBio sequences (average length 10,603 bp), one lane Illumina MiSeq sequencing (2 x 250 bp paired end), Phase Genomics Hi-C scaffolding, PacBio and Illumina transcriptome sequencing |
Eutrema salsugineum | Brassicaceae | A relative of arabidopsis with high salt tolerance | 240 Mbp | 26,351 | JGI | 2013[65] | ||
Eutrema parvulum | Brassicaceae | Comparative analysis of crucifer genomes | 2013[52] | |||||
Leavenworthia alabamica | Brassicaceae | Comparative analysis of crucifer genomes | 2013[52] | |||||
Sisymbrium irio | Brassicaceae | Comparative analysis of crucifer genomes | 2013[52] | |||||
Thellungiella parvula | Brassicaceae | A relative of arabidopsis with high salt tolerance | 2011[66] | |||||
Cannabis sativa (hemp) | Cannabaceae | Hemp and marijuana production | ca 820 Mbp | 30,074 based on transcriptome assembly and clustering | 2011[67] | Illumina/454
scaffold N50 16.2 Kbp | ||
Capparis spinosa var. herbacea (Caper) | Capparaceae | Crop | 274.53 Mb | 21,577 | 2022[68] | contig N50 9.36 Mb | ||
Carica papaya (papaya) | Caricaceae | Fruit crop | 372 Mbp | 28,629 | 2008[69] | contig N50 11kbp
scaffold N50 1Mbp total coverage ~3x (Sanger) 92.1% unigenes mapped 235Mbp anchored (of this 161Mbp also oriented) | ||
Casuarina equisetifolia
(Australian Pine) |
Casuarinaceae | bonsai subject | 300 Mbp | 29,827 | 2018[70] | |||
Tripterygium wilfordii (Lei gong teng) | Celastraceae | Chinese medicine crop | 340.12 Mbp | 31,593 | 2021[71] | Contig N50 3.09 Mbp | ||
Cleome gynandra
(African cabbage) |
Cleomaceae | C4 leafy vegetable and medicinal plant | 740 Mb | 30,933 | 2023[72] | N50 of 42 Mb | ||
Kalanchoë fedtschenkoi Raym.-Hamet & H. PerrierKalanchoe | Crassulaceae | Molecular genetic model for obligate CAM species in the eudicots | 256 Mbp | 30,964 | 34 | 2017[73] | ~70× paired-end reads and ~37× mate-pair reads generated using an Illumina MiSeq platform. | |
Rhodiola crenulata (Tibetan medicinal herb) | Crassulaceae | Uses for medicine and food | 344.5 Mb | 35,517 | 2017[74] | |||
Citrullus lanatus (watermelon) | Cucurbitaceae | Vegetable crop | ca 425 Mbp | 23,440 | BGI | 2012[75] | Illumina
coverage 108.6x contig N50 26.38 kbp Scaffold N50 2.38 Mbp genome covered 83.2% ~97% ESTs mapped | |
Cucumis melo (Muskmelon) DHL92 | Cucurbitaceae | Vegetable crop | 450 Mbp | 27,427 | 2012[76] | 454
13.5x coverage contig N50: 18.1kbp scaffold N50: 4.677 Mbp WGS | ||
Cucumis sativus (cucumber) 'Chinese long' inbred line 9930 | Cucurbitaceae | Vegetable crop | 350 Mbp (Kmer depth) 367 Mbp (flow cytometry) | 26,682 | 2009[77] | contig N50 19.8kbp
scaffold N50 1,140kbp total coverage ~72.2 (Sanger + Ilumina) 96.8% unigenes mapped 72.8% of the genome anchored | ||
Cucurbita argyrosperma subsp. argyrosperma
(Silver-seed gourd) |
Cucurbitaceae | Seed and fruit crop | 228.8 Mbp | 27,998 | 20 | National Autonomous University of Mexico | 2019,[78] updated in 2021 | contig N50 447 kbp
scaffold N50 11.6 Mbp total coverage: 120x Illumina (HiSeq2000 and MiSeq) + 31x PacBio RSII |
Cucurbita argyrosperma subsp. sororia
(wild gourd) |
Cucurbitaceae | Wild relative of the silver-seed gourd | 255.2 Mbp | 30,592 | 20 | National Autonomous University of Mexico | 2021[79] | contig N50 1.2 Mbp
scaffold N50 12.1 Mbp total coverage: 213x Illumina HiSeq4000 + 75.4x PacBio Sequel |
Siraitia grosvenorii
(Monk fruit) |
Cucurbitaceae | Chinese medicine/sweetener | 456.5 Mbp | 30,565 | Anhui Agricultural University | 2018[80] | ||
Hippophae rhamnoides (sea-buckthorn) | Elaeagnaceae | used in food and cosmetics | 730 Mbp | 30,812 | 2022[81] | |||
Hevea brasiliensis (rubber tree) | Euphorbiaceae | the most economically important member of the genus Hevea | 2013[82] | |||||
Jatropha curcas Palawan | Euphorbiaceae | bio-diesel crop | 2011[83] | |||||
Manihot esculenta (Cassava) | Euphorbiaceae | Humanitarian importance | ~760 Mb | 30,666 | JGI | 2012[84] | ||
Ricinus communis (Castor bean) | Euphorbiaceae | Oilseed crop | 320 Mbp | 31,237 | JCVI | 2010[85] | Sanger coverage~4.6x contig N50 21.1 kbp scaffold N50 496.5kbp | |
Ricinus communis L. (Wild Castor) | Euphorbiaceae | one of the most important oil crops worldwide | ~318.13 Mb | 30,066 | National Key R&D Program of China, the National Natural Science Foundation of China, the Guangdong Basic and Applied Basic Research Foundation, China, and the Shenzhen Science and Technology Program, China | 2021[86] | genome size of 316 Mb, a scaffold N50 of 31.93 Mb, and a contig N50 of 8.96 Mb | |
Ammopiptanthus nanus | Fabaceae | Only genus of evergreen broadleaf shrub | 889 Mb | 37,188 | 2018[87] | |||
Cajanus cajan (Pigeon pea) var. Asha | Fabaceae | Model legume | 2012[88][89] | |||||
Arachis duranensis (A genome diploid wild peanut) accession V14167 | Fabaceae | Wild ancestor of peanut, an oilseed and grain legume crop | 2016[90] | Illumina 154x coverage, contig N50 22 kbp, scaffold N50 948 kbp | ||||
Amphicarpaea edgeworthii (Chinese hog-peanut) | Fabaceae | produces both aerial and subterranean fruits | 299-Mb | 27 899 | Taishan Scholar Program, National Natural Science Foundation of China, the Innovation Program of SAAS | 2021[91] | ||
Arachis ipaensis (B genome diploid wild peanut) accession K30076 | Fabaceae | Wild ancestor of peanut, an oilseed and grain legume crop | 2016[90] | Illumina 163x coverage, contig N50 23 kbp, scaffold N50 5,343 kbp | ||||
Cicer arietinum (chickpea) | Fabaceae | filling | 2013[92] | |||||
Cicer arietinum L. (chickpea) | Fabaceae | 2013[93] | ||||||
Dalbergia odorifera (fragrant rosewood) | Fabaceae | Wood product (heartwood) and folk medicine | 653 Mb | 30,310 | 10 | Chinese Academy of Forestry | 2020[94] | Contig N50: 5.92Mb
Scaffold N50: 56.1 6Mb |
Faidherbia albida
(Apple-Ring Acacia) |
Fabaceae | Importante in the Sahel for raising bees | 28,979 | 2018[95][45] | ||||
Glycine max (soybean) var. Williams 82 | Fabaceae | Protein and oil crop | 1115 Mbp | 46,430 | 2010[96] | Contig N50:189.4kbp
Scaffold N50:47.8Mbp Sanger coverage ~8x WGS 955.1 Mbp assembled | ||
Lablab purpureus
(Hyacinth Bean) |
Fabaceae | Crop for human consumption | 20,946 | 2018[45][97] | ||||
Lotus japonicus (Bird's-foot Trefoil) | Fabaceae | Model legume | 2008[98] | |||||
Medicago truncatula (Barrel Medic) | Fabaceae | Model legume | 2011[99] | |||||
Melilotus officinalis (sweet yellow clover) | Fabaceae | Forage and Chinese medicine | 976.27 Mbp | 50,022 | 2023[100] | |||
Phaseolus vulgaris (common bean) | Fabaceae | Model bean | 520 Mbp | 31,638 | JGI | 2013?[101] | ||
Prosopis cineraria (Ghaf) | Fabaceae | Desert mimosoid legume | 691 Mbp | 55,325 | 2023[102] | |||
Vicia faba L. (Faba bean) | Fabaceae | Nature (journal) | 2023[103] | |||||
Vicia villosa (hairy vetch) | Fabaceae | Forage and cover crop | 2.03 Gbp | 2023[104] | ||||
Vigna hirtella (Wild vigna) | Fabaceae | Wild legume | 474.1 Mbp | 2023[103][105] | ||||
Vigna reflexo-pilosa (Créole bean) | Fabaceae | Tetraploid wild legume | 998.7 Mbp | 2023[106][107] | ||||
Vigna subterranea
(Bambara Groundnut) |
Fabaceae | similar to peanuts | 31,707 | 2018[108][45] | ||||
Vigna trinervia | Fabaceae | 498,7 Mbp | 2023[106] | |||||
Trifolium pratense L. (Red clover) | Fabaceae | often used to relieve symptoms of menopause, high cholesterol, and osteoporosis.[109] | 2022[110] | |||||
Vicia sativa L. (Common vetch) | Fabaceae | grain to livestock | 2022[111] | |||||
Macrotyloma uniflorum (Horse gram) | Fabaceae | horsefeed | 2021[112] | |||||
Castanea mollissima (Chinese chestnut) | Fagaceae | cultivated nut | 785.53 Mb | 36,479 | Beijing University of Agriculture | 2019[113] | Illumina: ~42.7×
PacBio: ~87× contig N50: 944,000bp | |
Quercus robur (European oak) | Fagaceae | Pedunculate oak,
large diversity, somatic mutation studies |
736 Mb | 25,808 | 12 | Biogeco lab, Inrae, University of Bordeaux | 2018[114] | https://www.oakgenome.fr/?page_id=587 |
Carya illinoinensis
Pecan |
Junglandaceae | snacks in various recipes | 651.31 Mb | 2019[115] | ||||
Juglans mandshurica Maxim. (Manchurian walnut) | Junglandaceae | cultivated nut | 548.7 Mb | 2022[116] | ||||
Juglans regia (Persian walnut) | Junglandaceae | cultivated nut | 540 Mb | Chinese Academy of Forestry | 2020[117] | |||
Juglans sigillata (Iron walnut) | Junglandaceae | cultivated nut | 536.50 Mb | Nanjing Forestry University | 2020[118] | Illumina+Nanopore+bionano
scaffold N50: 16.43 Mb, contig N50: 4.34 Mb | ||
Linum usitatissimum (flax) | Linaceae | Crop | ~350 Mbp | 43,384 | BGI et al. | 2012[119] | ||
Bombax ceiba
(red silk cotton tree) |
Malvaceae | capsules with white fibre like cotton | 895 Mb | 2018[120] | ||||
Durio zibethinus (Durian) | Malvaceae | Tropical fruit tree | ~738 Mbp | 2017[121] | ||||
Gossypium raimondii | Malvaceae | One of the putative progenitor species of tetraploid cotton | 2013?[122] | |||||
Theobroma cacao (cocoa tree) | Malvaceae | Flavouring crop | ||||||
Theobroma cacao (cocoa tree) cv. Matina 1-6 | Malvaceae | Most widely cultivated cacao type | 2013[123] | |||||
Theobroma cacao (200 accessions) | Malvaceae | domestication history of cacao | 2018[124] | |||||
Azadirachta indica (neem) | Meliaceae | Source of number of Terpenoids, including biopesticide azadirachtin, Used in Traditional Medicine | 364 Mbp | ~20000 | GANIT Labs | 2012[125] and 2011[126] | Illumina GAIIx, scaffold N50 of 452028bp, Transcriptome data from Shoot, Root, Leaf, Flower and Seed | |
Artocarpus nanchuanensis (Bayberry) | Moraceae | Extremely endangered fruit tree | 769.44 Mbp | 39,596 | 28 | 2022[127] | ||
Moringa oleifera
(Horseradish Tree) |
Moringaceae | traditional herbal medicine | 18,451 | 2018[128][45] | ||||
Eucalyptus grandis (Rose gum) | Myrtaceae | Fibre and timber crop | 691.43 Mb | 2011[129] | ||||
Eucalyptus pauciflora (Snow gum) | Myrtaceae | Fibre and timber crop | 594.87 Mb | ANU | 2020[130] | Nanopore + Illumina; contig N50: 3.23 Mb | ||
Melaleuca alternifolia (tea tree) | Myrtaceae | terpene-rich essential oil with therapeutic and cosmetic uses around the world | 362 Mb | 37,226 | Gigabyte, NCBI GenBank, GigaScience | 2021[131] | 3128 scaffolds with a total length of 362 Mb (N50 = 1.9 Mb) | |
Averrhoa carambola (Star Fruit) | Oxalidales | fruit crop | 335.49 Mb | 2020[132] | ||||
C. cathayensis
(Chinese hickory) |
Rosaceae | fruit crop | 706.43 Mb | 2019[115] | ||||
Eriobotrya japonica (Loquat) | Rosaceae | Fruit tree | 760.1 Mb | 45,743 | Shanghai Academy of Agricultural Sciences | 2020[133] | Illumina+Nanopore+Hi-C
17 chromosomes, scaffold N50: 39.7 Mb | |
Fragaria vesca (wild strawberry) | Rosaceae | Fruit crop | 240 Mbp | 34,809 | 2011[134] | scaffold N50: 1.3 Mbp
454/Illumina/solid 39x coverage WGS | ||
Gillenia trifoliata | Rosaceae | Apple Tribe | 320.17±4.22 Mb | 26,166 | 18 | 2021[135] | Number of scaffolds(>2kb): 789, scaffold N50: 30,093,771 bp, Contig N50 (bp): 828,523 | |
Malus domestica (apple) "Golden Delicious" | Rosaceae | Fruit crop | ~742.3 Mbp | 57,386 | 2010[136] | contig N50 13.4 (kbp??)
scaffold N50 1,542.7 (kbp??) total coverage ~16.9x (Sanger + 454) 71.2% anchored | ||
Prunus amygdalus (almond) | Rosaceae | Fruit crop | 2013?[137] | |||||
Prunus avium (sweet cherry) cv. Stella | Rosaceae | Fruit crop | 2013?[137] | |||||
Prunus mume (Chinese plum or Japanese apricot) | Rosaceae | Fruit crop | 2012[138] | |||||
Prunus persica (peach) | Rosaceae | Fruit crop | 265 Mbp | 27,852 | 2013[139] | Sanger coverage:8.47x
WGS ca 99% ESTs mapped 215.9 Mbp in pseudomolecules | ||
Prunus salicina (Japanese plum) | Rosaceae | Fruit crop | 284.2 Mbp | 24,448 | 8 | 2020[140] | PacBio/Hi-C, with contig N50 of 1.78 Mb and scaffold N50 of 32.32 Mb. | |
Pyrus bretschneideri (ya pear or Chinese white pear) cv. Dangshansuli | Rosaceae | Fruit crop | 2012[141] | |||||
Pyrus communis (European pear) cv. Doyenne du Comice | Rosaceae | Fruit crop | 2013?[137] | |||||
Rubus occidentalis
(Black raspberry) |
Rosaceae | Fruit crop | 290 Mbp | 2018[142] | ||||
Citrus clementina (Clementine) | Rutaceae | Fruit crop | 2013?[143] | |||||
Citrus sinensis (Sweet orange) | Rutaceae | Fruit crop | 2013?,[143] 2013[144] | |||||
Clausena lansium (Wampee) | Rutaceae | Fruit crop | 2021[145] | |||||
Populus trichocarpa (poplar) | Salicaceae | Carbon sequestration, model tree, timber | 510 Mbp (cytogenetic) 485 Mbp (coverage) | 73,013 [Phytozome] | 2006[146] | Scaffold N50: 19.5 Mbp
Contig N50:552.8 Kbp [phytozome] WGS >=95 % cDNA found | ||
Populus pruinosa
(desert tree) |
Salicaceae | farming and ranching | 479.3 Mbp | 35,131 | 2017[147] | |||
Acer truncatum (purpleblow maple) | Sapindaceae | Tree producing nervonic acid | 633.28 Mb | 28,438 | 2020[148] | contig N50 = 773.17 Kb; scaffold N50 = 46.36 Mb | ||
Acer yangbiense | Sapindaceae | Plant species with extremely small populations | 110 Gb | 28,320 | 13 | 2019[149] | scaffold N50 = 45 Mb | |
Dimocarpus longan (Longan) | Sapindaceae | Fruit crop | 471.88 Mb | 2017[150] | ||||
Xanthoceras sorbifolium Bunge (Yellowhorn) | Sapindaceae | Fruit Crop | 504.2 Mb | 24,672 | 2019[151][152] | |||
Aquilaria sinensis (Agarwood) | Thymelaeaceae | Fragrant wood | 726.5 Mb | 29,203 | 2020[153] | Illumina+nanopore+Hi-C, scaffold N50: 88.78 Mb | ||
Vitis vinifera (grape) genotype PN40024 | Vitaceae | fruit crop | 2007[154] |
Asterids
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Asclepias syriaca, (common milkweed) | Apocynaceae | Exudes milky latex | 420 Mbp | 14,474 | Oregon State University | 2019[155] | 80.4× depth
N50 = 3,415 bp |
Erigeron breviscapus (Chinese herbal fleabane) | Asteraceae | Chinese medicine | 37,505 | 2017[156] | |||
Helianthus annuus (sunflower) | Asteraceae | Oil crop | 3.6 Gbb | 52,232 | INRA and The Sunflower Genome Database[157] | 2017[158] | N50 contig: 13.7 kb |
Lactuca sativa (lettuce) | Asteraceae | Vegetable crop | 2.5 Gbb | 38,919 | 2017[159] | N50 contig: 12 kb; N50 scaffold: 476 kb | |
Handroanthus impetiginosus, Bignoniaceae
(Pink Ipê) |
Bignoniaceae | Common tree | 503.7 Mb | 31,668 | 2017[160] | ||
Diospyros oleifera Cheng (Persimmon or Kaki) | Ebenaceae | Fruit tree | 849.53 Mb | 28,580 | Zhejiang University & Chinese Academy of Forestry | 2019[161] & 2020[162] | Two genomes both chromosome scale & assigned to 15 pseudochromosomes |
Salvia miltiorrhiza Bunge
(Chinese red sage) |
Lamiaceae | TCM treatment for COPD | 641 Mb | 34,598 | 2015[163] | ||
Callicarpa americana (American beautyberry) | Lamiaceae | Ornamental shrub and insect-repellent | 506 Mb | 32,164 | Michigan State University | 2020[164] | 17 pseudomolecules Contig N50: 7.5Mb Scaffold N50: and 29.0 Mb |
Mentha x piperita (Peppermint) | Lamiaceae | Oil crop | 353 Mb | 35,597 | Oregon State University | 2017[165] | |
Tectona grandis
(Teak) |
Lamiaceae | Durability and water resistance | 31,168 | 2019[166] | |||
Utricularia gibba (humped bladderwort) | Lentibulariaceae | model system for studying genome size evolution; a carnivorous plant | 81.87 Mb | 28,494 | LANGEBIO, CINVESTAV | 2013[167] | Scaffold N50: 80.839 Kb |
Camptotheca acuminata Decne
(Chinese happy tree) |
Nyssaceae | chemical drugs for cancer treatment | 403 Mb | 31,825 | 2017[168] | ||
Davidia involucrata Baill (Dove tree) | Nyssaceae | Living fossil | 1,169 Mb | 42,554 | 2020[169] | ||
Mimulus guttatus | Phrymaceae | model system for studying ecological and evolutionary genetics | ca 430 Mbp | 26,718 | JGI | 2013?[170] | Scaffold N50 = 1.1 Mbp
Contig N50 = 45.5 Kbp |
Primula vulgaris (Common primrose) | Primulaceae | Used for cooking | 474 Mb | 2018[171] | |||
Cinchona pubescens Vahl. (Fever tree) | Rubiaceae | Anti-malarial | 1.1 Gb | 2022[172] | |||
Solanum lycopersicum (tomato) cv. Heinz 1706 | Solanaceae | Food crop | ca 900 Mbp | 34,727 | SGN | 2011[173] 2012[174] | Sanger/454/Illumina/Solid
Pseudomolecules spanning 91 scaffolds (760Mbp of which 594Mbp have been oriented ) over 98% ESTs mappable |
Solanum aethiopicum (Ethiopian eggplant) | Solanaceae | Food crop | 1.02 Gbp | 34,906 | BGI | 2019[175] | Illumina
scaffold N50: 516,100bp contig N50: 25,200 bp ~109× coverage |
Solanum pimpinellifolium (Currant Tomato) | Solanaceae | closest wild relative to tomato | 2012[174] | Illumina
contig N50: 5100bp ~40x coverage | |||
Solanum tuberosum (Potato) | Solanaceae | Food crop | 726 Mbp[176] | 39,031 | Potato Genome Sequencing Consortium (PGSC) | 2011[177][178] | Sanger/454/Illumina
79.2x coverage contig N50: 31,429bp scaffold N50: 1,318,511bp |
Solanum commersonii (commerson's nightshade) | Solanaceae | Wild potato relative | 838 Mbp kmer (840 Mbp) | 37,662 | UNINA, UMN, UNIVR, Sequentia Biotech, CGR | 2015[179] | Illumina
105x coverage contig N50: 6,506bp scaffold N50: 44,298bp |
Cuscuta campestris
(field dodder) |
Solanaceae | model system for parasitic plants | 556 Mbp kmer (581 Mbp) | 44,303 | RWTH Aachen University, Research Center Jülich, University of Tromsø, Helmholtz Zentrum München, Technical University Munich, University of Vienna | 2018[180] | scaffold N50 = 1.38 Mbp |
Cuscuta australis (Southern dodder) | Solanaceae | model system for parasitic plants | 265 Mbp
kmer (273 Mbp) |
19,671 | Kunming Institute of Botany, Chinese Academy of Sciences | 2018[181] | scaffold N50 = 5.95 Mbp
contig N50 = 3.63 Mbp |
Nicotiana benthamiana | Solanaceae | Close relative of tobacco | ca 3 Gbp | 2012[182] | Illumina
63x coverage contig N50: 16,480bp scaffold N50:89,778bp >93% unigenes found | ||
Nicotiana sylvestris (Tobacco plant) | Solanaceae | model system for studies of terpenoid production | 2.636 Gbp | Philip Morris International | 2013[183] | 94x coverage
scaffold N50: 79.7 kbp 194kbp superscaffolds using physical Nicotiana map | |
Nicotiana tomentosiformis | Solanaceae | Tobacco progenitor | 2.682 Gb | Philip Morris International | 2013[183] | 146x coverage
scaffold N50: 82.6 kb 166kbp superscaffolds using physical Nicotiana map | |
Capsicum annuum (Pepper)
(a) cv. CM334 (b) cv. Zunla-1 |
Solanaceae | Food crop | ~3.48 Gbp | (a) 34,903
(b) 35,336 |
(a) 2014[184]
(b) 2014[185] |
N50 contig: (a) 30.0 kb (b) 55.4 kb
N50 scaffold: (a) 2.47 Mb (b) 1.23 Mb | |
Capsicum annuum var. glabriusculum (Chiltepin) | Solanaceae | Progenitor of cultivated pepper | ~3.48 Gbp | 34,476 | 2014[185] | N50 contig: 52.2 kb
N50 scaffold: 0.45 Mb | |
Petunia hybrida | Solanaceae | Economically important flower | 2011[186] |
Monocots
Grasses
Organism strain | Family | Relevance | Genome size | Number of genes predicted | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|
Setaria italica (Foxtail millet) | Poaceae | Model of C4 metabolism | 2012[187] | ||||
Aegilops tauschii (Tausch's goatgrass) | Poaceae | bread wheat D-genome progenitor | ca 4.36 Gb | 39,622 | 2017[188] | pseudomolecule assembly | |
Bothriochloa decipiens
(Australian bluestem grass) |
Poaceae | BCD clade and polyploid | 1,218.22 Mb | 60,652 | 2023[189] | Scaffold N50: 42.637 Mb | |
Brachypodium distachyon (purple false brome) | Poaceae | Model monocot | 2010[190] | ||||
Coix lacryma-jobi L. (Job's tears) | Poaceae | Crop & used in medicine & ornamentation | 1.619 Gb | 39,629 | 2019[191] | ||
Dichanthelium oligosanthes (Heller's rosette grass) | Poaceae | C3 grass closely related to C4 species | 960 Mb | DDPSC | 2016[192] | ||
Digitaria exilis (white fonio) | Poaceae | African orphan crop | 761 Mb | ICRISAT, UC Davis | 2021[193] | 3,329 contigs. N50: 1.73 Mb; L50, 126) | |
Eragrostis curvula | Poaceae | good for livestock | 602 Mb | 56,469 | 2019[194] | ||
Hordeum vulgare (barley) | Poaceae | Model of ecological adoption | IBSC | 2012,[195] 2017[196] | |||
Oryza brachyantha (wild rice) | Poaceae | Disease resistant wild relative of rice | 2013[197] | ||||
Oryza glaberrima (African rice) var CG14 | Poaceae | West-African species of rice | 2010[198] | ||||
Oryza rufipogon (red rice) | Poaceae | Ancestor to Oryza sativa | 406 Mb | 37,071 | SIBS | 2012[199] | Illumina HiSeq2000
100x coverage |
Oryza sativa (long grain rice) ssp indica | Poaceae | Crop and model cereal | 430 Mb[200] | International Rice Genome Sequencing Project (IRGSP) | 2002[201] | ||
Oryza sativa (Short grain rice) ssp japonica | Poaceae | Crop and model cereal | 430 Mb | International Rice Genome Sequencing Project (IRGSP) | 2002[202] | ||
Panicum virgatum (switchgrass) | Poaceae | biofuel | 2013?[203] | ||||
Poa annua (annual bluegrass) | Poaceae | weed | 3.56 Gb | 76,420 | USDA ARS, Forage and Range Research | 2023[204] | unphased (haploid) pseudomolecules |
Poa infirma (weak bluegrass) | Poaceae | diploid progenitor to Poa annua | 2.25 Gb | 39,420 | Penn State University | 2023[205] | unphased (haploid) pseudomolecules |
Poa pratensis (Kentucky bluegrass) | Poaceae | Lawn grass | 6.09 Gbp | 2023[206] | Scaffold N50: 65.1 Mbp | ||
Poa supina (supine bluegrass) | Poaceae | diploid progenitor to Poa annua | 1.27 Gb | 37,935 | Penn State University | 2023[205] | unphased (haploid) pseudomolecules |
Phyllostachys edulis (moso bamboo) | Poaceae | Bamboo textile industry | 603.3 Mb | 25,225 | 2013[207] 2018[208] | ||
Sorghum bicolor genotype BTx623 | Poaceae | Crop | ca 730 Mb | 34,496 | 2009[209] | contig N50:195.4kbp
scaffold N50: 62.4Mbp Sanger, 8.5x coverage WGS | |
Triticum aestivum (bread wheat) | Poaceae | 20% of global nutrition | 14.5 Gb | 107,891 | IWGSC | 2018[210] | pseudomolecule assembly |
Triticum urartu | Poaceae | Bread wheat A-genome progenitor | ca 4.94 Gb | BGI | 2013[211] | Non-repetitive sequence assembled
Illumina WGS | |
Zea mays (maize) ssp mays B73 | Poaceae | Cereal crop | 2.3 Gb | 39,656[212] | 2009[213] | contig N50 40kbp
scaffold N50: 76kbp Sanger, 4-6x coverage per BAC | |
Pennisetum glaucum (pearl millet) | Poaceae | Sub-Saharan and Sahelian millet species | ~1,79 Gb | 38,579 | 2017[214] | WGS and bacterial artificial chromosome (BAC) sequencing |
Other non-grasses
Organism strain | Family | Relevance | Genome size | Number of genes predicted | No of chromosomes | Organization | Year of completion | Assembly status |
---|---|---|---|---|---|---|---|---|
Ananas bracteatus accession CB5 | Bromeliaceae | Wild pineapple relative | 382 Mbp | 27,024 | 25 | 2015[215] | 100× coverage using Illumina paired-end reads of libraries with different insert sizes. | |
Ananas comosus (L.) Merr. (Pineapple), varieties F153 and MD2 | Bromeliaceae | The most economically valuable crop possessing crassulacean acid metabolism (CAM) | 382 Mb | 27,024 | 25 | 2015[215] | 400× Illumina reads, 2× Moleculo synthetic long reads, 1× 454 reads, 5× PacBio single-molecule long reads and 9,400 BACs. | |
Musa acuminata (Banana) | Musaceae | A-genome of modern banana cultivars | 523 Mbp | 36,542 | 2012[216] | N50 contig: 43.1 kb
N50 scaffold: 1.3 Mb | ||
Musa balbisiana (Wild banana) (PKW) | Musaceae | B-genome of modern banana cultivars | 438 Mbp | 36,638 | 2013[217] | N50 contig: 7.9 kb | ||
Musa balbisiana (DH-PKW) | Musaceae | B-genome (B-subgenome to cultivated allotriploid bananas) | 430 Mb | 35,148 | 11 | CATAS, BGI, CIRAD | 2019[218] | N50 contig: 1.83 Mb |
Musa beccarii (Red ornamental banana) | Musaceae | Ornamental, aids understanding Musaceae genomes evolution | 567 Mb | 39,112 | 9 | 2023[219] | ||
Calamus simplicifolius |
Arecaceae | native to tropical and subtropical regions | 1.98 Gb | 51,235 | 2018[220] | |||
Cocos nucifera (Coconut palm) | Arecaceae | used in food and cosmetics | ~2.42 Gb | 2017[221] | ||||
Daemonorops jenkinsiana | Arecaceae | native to tropical and subtropical regions. | 1.61 Gb | 52,342 | 2018[220] | |||
Phoenix dactylifera (Date palm) | Arecaceae | Woody crop in arid regions | 658 Mbp | 28,800 | 2011[222] | N50 contig: 6.4 kb | ||
Elaeis guineensis (African oil palm) | Arecaceae | Oil-bearing crop | ~1800 Mbp | 34,800 | 2013[223] | N50 scaffold: 1.27 Mb | ||
Spirodela polyrhiza (Greater duckweed) | Araceae | Aquatic plant | 158 Mbp | 19,623 | 2014[224] | N50 scaffold: 3.76 Mb | ||
Dendrobium hybrid cultivar ‘Emma White’ | Orchidaceae | Commercialised hybrid orchid | 678 Mbp | 2022[225] | ||||
Phalaenopsis equestris (Schauer) Rchb.f. (Moth orchid) | Orchidaceae | Breeding parent of many modern moth orchid cultivars and hybrids.
Plant with crassulacean acid metabolism (CAM). |
1600 Mbp | 29,431 | 2014[226] | N50 scaffold: 359,115 kb | ||
Iris pallida Lam. (Dalmatian Iris) | Iridaceae | Ornamental and, commercial interest in secondary metabolites | 10.04 Gbp | 63,944 | Novartis | 2023[227] | Scaffold N50: 14.34 Mbp | |
Iris sibirica (Siberian Ibis) | Iridaceae | Ornamental flower | 2023[228] | |||||
Iris virginica (Southern Blue Flag Iris) | Iridaceae | Ornamental flower | 2023[228] |
Press releases announcing sequencing
Not meeting criteria of the first paragraph of this article in being nearly full sequences with high quality, published, assembled and publicly available. This list includes species where sequences are announced in press releases or websites, but not in a data-rich publication in a refereed peer-review journal with DOI.
- Corchorus olitorius (Jute mallow), fibre plant 2017[229][230]
- Corchorus capsularis 2017[229]
- Fraxinus excelsior, European ash (2013 draft[231][232])
See also
- List of sequenced eukaryotic genomes
- List of sequenced animal genomes
- List of sequenced archaeal genomes
- List of sequenced bacterial genomes
- List of sequenced fungi genomes
- List of sequenced plastomes
- List of sequenced protist genomes
External links
- http://plabipd.de/timeline_view.ep
- http://genomevolution.org/wiki/index.php/Sequenced_plant_genomes
- https://phytozome.jgi.doe.gov/pz/portal.html
- https://bioinformatics.psb.ugent.be/plaza/
References
- ↑ "Draft genome of the aquatic moss Fontinalis antipyretica (Fontinalaceae, Bryophyta)" (in en). Gigabyte 2020: 1–9. 2020. doi:10.46471/gigabyte.8. PMID 36824590.
- ↑ "Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome". Cell 171 (2): 287–304.e15. October 2017. doi:10.1016/j.cell.2017.09.030. PMID 28985561.
- ↑ "The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants". Science 319 (5859): 64–9. January 2008. doi:10.1126/science.1150646. PMID 18079367. Bibcode: 2008Sci...319...64R.
- ↑ "Genome Sequencing of Pleurozium schreberi: The Assembled and Annotated Draft Genome of a Pleurocarpous Feather Moss". G3 9 (9): 2791–2797. September 2019. doi:10.1534/g3.119.400279. PMID 31285273.
- ↑ "The Selaginella genome identifies genetic changes associated with the evolution of vascular plants". Science 332 (6032): 960–3. May 2011. doi:10.1126/science.1203810. PMID 21551031. Bibcode: 2011Sci...332..960B.
- ↑ "Phytozome". JGI MycoCosm. http://genome.jgi-psf.org/Selmo1/Selmo1.home.html.
- ↑ "Extreme haplotype variation in the desiccation-tolerant clubmoss Selaginella lepidophylla". Nature Communications 9 (1): 13. January 2018. doi:10.1038/s41467-017-02546-5. PMID 29296019. Bibcode: 2018NatCo...9...13V.
- ↑ 8.0 8.1 "Fern genomes elucidate land plant evolution and cyanobacterial symbioses". Nature Plants 4 (7): 460–472. July 2018. doi:10.1038/s41477-018-0188-8. PMID 29967517.
- ↑ "The C-Fern (Ceratopteris richardii) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly". Scientific Reports 9 (1): 18181. December 2019. doi:10.1038/s41598-019-53968-8. PMID 31796775. Bibcode: 2019NatSR...918181M.
- ↑ "Phytozome v13". https://phytozome-next.jgi.doe.gov/info/Crichardii_v2_1.
- ↑
- "Pervasive genome duplications across the plant tree of life and their links to major evolutionary innovations and transitions". Computational and Structural Biotechnology Journal (Elsevier BV) 20: 3248–3256. 2022. doi:10.1016/j.csbj.2022.06.026. PMID 35782740.
- "Deep reticulation: the long legacy of hybridization in vascular plant evolution". The Plant Journal (John Wiley & Sons Ltd) 114 (4): 743–766. May 2023. doi:10.1111/tpj.16142. PMID 36775995.
- These reviews cite this research.
- "The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence". Nature Plants 8 (5): 500–512. May 2022. doi:10.1038/s41477-022-01146-6. PMID 35534720.
- ↑ "The Cycas genome and the early evolution of seed plants". Nature Plants 8 (4): 389–401. April 2022. doi:10.1038/s41477-022-01129-7. PMID 35437001.
- ↑ 13.0 13.1 13.2 13.3 "Sequence of the Sugar Pine Megagenome". Genetics 204 (4): 1613–1626. December 2016. doi:10.1534/genetics.116.193227. PMID 27794028.
- ↑ "The Norway spruce genome sequence and conifer genome evolution". Nature 497 (7451): 579–84. May 2013. doi:10.1038/nature12211. PMID 23698360. Bibcode: 2013Natur.497..579N.
- ↑ "Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data". Bioinformatics 29 (12): 1492–7. June 2013. doi:10.1093/bioinformatics/btt178. PMID 23698863.
- ↑ "Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism". The Plant Journal 83 (2): 189–212. July 2015. doi:10.1111/tpj.12886. PMID 26017574.
- ↑ "Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies". Genome Biology 15 (3): R59. March 2014. doi:10.1186/gb-2014-15-3-r59. PMID 24647006.
- ↑ "Sequencing and assembly of the 22-gb loblolly pine genome". Genetics 196 (3): 875–90. March 2014. doi:10.1534/genetics.113.159715. PMID 24653210.
- ↑ "Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation". Genetics 196 (3): 891–909. March 2014. doi:10.1534/genetics.113.159996. PMID 24653211.
- ↑ "Draft genome of the living fossil Ginkgo biloba". GigaScience 5 (1): 49. November 2016. doi:10.1186/s13742-016-0154-1. PMID 27871309.
- ↑ "The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae". G3 7 (9): 3157–3167. September 2017. doi:10.1534/g3.117.300078. PMID 28751502.
- ↑ "A genome for gnetophytes and early evolution of seed plants". Nature Plants 4 (2): 82–89. February 2018. doi:10.1038/s41477-017-0097-2. PMID 29379155.
- ↑ "Stepwise large genome assembly approach: a case of Siberian larch (Larix sibirica Ledeb)". BMC Bioinformatics 20 (Suppl 1): 37. February 2019. doi:10.1186/s12859-018-2570-y. PMID 30717661.
- ↑ "Abies alba Mill.): A Community-Generated Genomic Resource". G3 9 (7): 2039–2049. July 2019. doi:10.1534/g3.119.400083. PMID 31217262.
- ↑ Amborella Genome Project (December 2013). "The Amborella genome and the evolution of flowering plants". Science 342 (6165): 1241089. doi:10.1126/science.1241089. PMID 24357323. https://escholarship.org/uc/item/06v4x3nz.
- ↑ "Amborella Genome Database". Penn State University. http://www.amborella.org/.
- ↑ "Chloranthus spicatus (Thunb.) Makino" (in en). https://www.gbif.org/species/3750517.
- ↑ "Chloranthus genome provides insights into the early diversification of angiosperms". Nature Communications 12 (1): 6930. November 2021. doi:10.1038/s41467-021-26922-4. PMID 34836973. Bibcode: 2021NatCo..12.6930G.
- ↑ "Chromosome-level reference genome of the soursop (Annona muricata): A new resource for Magnoliid research and tropical pomology". Molecular Ecology Resources 21 (5): 1608–1619. July 2021. doi:10.1111/1755-0998.13353. PMID 33569882.
- ↑ "The whole-genome assembly of an endangered Salicaceae species: Chosenia arbutifolia (Pall.) A. Skv". GigaScience 11. November 2022. doi:10.1093/gigascience/giac109. PMID 36374197.
- ↑
- "How deep is the conflict between molecular and fossil evidence on the age of angiosperms?". The New Phytologist (The Royal Society) 223 (1): 83–99. July 2019. doi:10.1098/rspb.2019.0099. PMID 30681148.
- This review cites this research.
- "Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution". Nature Plants 5 (1): 63–73. January 2019. doi:10.1038/s41477-018-0337-0. Template:S2cid. PMID 30626928.
- ↑ "Chromosome-Scale Assembly and Annotation of the Macadamia Genome (Macadamia integrifolia HAES 741)". G3 10 (10): 3497–3504. October 2020. doi:10.1534/g3.120.401326. PMID 32747341.
- ↑ "Comparison of long-read methods for sequencing and assembly of a plant genome". GigaScience 9 (12). December 2020. doi:10.1093/gigascience/giaa146. PMID 33347571.
- ↑ "Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)". Genome Biology 14 (5): R41. May 2013. doi:10.1186/gb-2013-14-5-r41. PMID 23663246.
- ↑ "Aquilegia caerulea". Phytozome v9.1. http://www.phytozome.net/aquilegia.php.
- ↑ "Trochodendron aralioides, the first chromosome-level draft genome in Trochodendrales and a valuable resource for basal eudicot research". GigaScience 8 (11). November 2019. doi:10.1093/gigascience/giz136. PMID 31738437.
- ↑ "The genome of the recently domesticated crop plant sugar beet (Beta vulgaris)". Nature 505 (7484): 546–9. January 2014. doi:10.1038/nature12817. PMID 24352233. Bibcode: 2014Natur.505..546D.
- ↑ 38.0 38.1 "The genome of Chenopodium quinoa". Nature 542 (7641): 307–312. February 2017. doi:10.1038/nature21370. PMID 28178233. Bibcode: 2017Natur.542..307J.
- ↑ "Phytozome". https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Ahypochondriacus_er.
- ↑ 40.0 40.1 "Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti". Proc Natl Acad Sci U S A 114 (45): 12003–12008. November 2017. doi:10.1073/pnas.1706367114. PMID 29078296. Bibcode: 2017PNAS..11412003C.
- ↑ "A draft genome assembly of halophyte Suaeda aralocaspica, a plant that performs C4 photosynthesis within individual cells". GigaScience 8 (9). September 2019. doi:10.1093/gigascience/giz116. PMID 31513708.
- ↑ "Simmondsia chinensis): A taxonomically isolated species that directs wax ester accumulation in its seeds". Science Advances 6 (11): eaay3240. March 2020. doi:10.1126/sciadv.aay3240. PMID 32195345.
- ↑ 43.0 43.1 "Novel proteases from the genome of the carnivorous plant Drosera capensis: structural prediction and comparative analysis". Proteins 84 (10): 1517–1533. July 2016. doi:10.1002/prot.25095. PMID 27353064.
- ↑ "Genomes and demographic histories of the endangered Bretschneidera sinensis (Akaniaceae)". GigaScience 11. June 2022. doi:10.1093/gigascience/giac050. PMID 35701375.
- ↑ 45.0 45.1 45.2 45.3 45.4 "The draft genomes of five agriculturally important African orphan crops". GigaScience 8 (3). March 2019. doi:10.1093/gigascience/giy152. PMID 30535374.
- ↑ "Genomic data of Marula (Sclerocarya birrea)". GigaDB Dataset. GigaScience Database. 2018. doi:10.5524/101057.
- ↑ 47.0 47.1 "Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch". Nature Genetics 49 (6): 904–912. May 2017. doi:10.1038/ng.3862. PMID 28481341.
- ↑ "Genome sequence and evolution of Betula platyphylla". Horticulture Research 8 (1): 37. February 2021. doi:10.1038/s41438-021-00481-7. PMID 33574224.
- ↑ "Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers". Molecular Ecology 22 (11): 3098–111. June 2013. doi:10.1111/mec.12131. PMID 23167599.
- ↑ "A chromosome-level reference genome of the hazelnut, Corylus heterophylla Fisch". GigaScience 10 (4). April 2021. doi:10.1093/gigascience/giab027. PMID 33871007.
- ↑ "The Corylus mandshurica genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding". Horticulture Research 8 (1): 54. March 2021. doi:10.1038/s41438-021-00495-1. PMID 33642584.
- ↑ 52.0 52.1 52.2 52.3 "An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions". Nature Genetics 45 (8): 891–8. August 2013. doi:10.1038/ng.2684. PMID 23817568.
- ↑ 53.0 53.1 "The Arabidopsis lyrata genome sequence and the basis of rapid genome size change". Nature Genetics 43 (5): 476–81. May 2011. doi:10.1038/ng.807. PMID 21478890.
- ↑ "Updated Col-0 Genome Annotation (Araport11 Official Release) Updated Jun 2016 | Araport". https://www.araport.org/data/araport11.
- ↑ ((The Arabidopsis Genome Initiative)) (December 2000). "Analysis of the genome sequence of the flowering plant Arabidopsis thaliana". Nature 408 (6814): 796–815. doi:10.1038/35048692. PMID 11130711. Bibcode: 2000Natur.408..796T.
- ↑ "The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry". Scientific Reports 7: 40728. January 2017. doi:10.1038/srep40728. PMID 28094805. Bibcode: 2017NatSR...740728B.
- ↑ "The genome of the mesopolyploid crop species Brassica rapa". Nature Genetics 43 (10): 1035–9. August 2011. doi:10.1038/ng.919. PMID 21873998. https://nrc-publications.canada.ca/eng/view/accepted/?id=8fdc0510-af47-4bba-bdf8-7c81bd2b18ec.
- ↑ "Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome". Science 345 (6199): 950–3. August 2014. doi:10.1126/science.1253435. PMID 25146293. Bibcode: 2014Sci...345..950C.
- "Oilseed rape genome sequenced". L'Institut national de la recherche agronomique (Press release). Archived from the original on 2017-07-19.
- ↑ "Capsella rubella". Phytozome v9.1. http://www.phytozome.net/capsella.php.
- ↑ "The Capsella rubella genome and the genomic consequences of rapid mating system evolution". Nature Genetics 45 (7): 831–5. July 2013. doi:10.1038/ng.2669. PMID 23749190.
- ↑ "The Cardamine hirsuta genome offers insight into the evolution of morphological diversity". Nature Plants 2 (11): 16167. October 2016. doi:10.1038/nplants.2016.167. PMID 27797353.
- ↑ "The Eruca sativa Genome and Transcriptome: A Targeted Analysis of Sulfur Metabolism and Glucosinolate Biosynthesis Pre and Postharvest". Frontiers in Plant Science 11: 525102. 2020. doi:10.3389/fpls.2020.525102. PMID 33193472.
- ↑ "Erysimum Genome Site". September 17, 2019. https://www.erysimum.org/.
- ↑ "Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae)". eLife 9: e51712. April 2020. doi:10.7554/eLife.51712. PMID 32252891.
- ↑ "The Reference Genome of the Halophytic Plant Eutrema salsugineum". Frontiers in Plant Science 4: 46. 2013. doi:10.3389/fpls.2013.00046. PMID 23518688.
- ↑ "The genome of the extremophile crucifer Thellungiella parvula". Nature Genetics 43 (9): 913–8. August 2011. doi:10.1038/ng.889. PMID 21822265.
- ↑ "The draft genome and transcriptome of Cannabis sativa". Genome Biology 12 (10): R102. October 2011. doi:10.1186/gb-2011-12-10-r102. PMID 22014239.
- ↑ "The Capparis spinosa var. herbacea genome provides the first genomic instrument for a diversity and evolution study of the Capparaceae family". GigaScience 11. October 2022. doi:10.1093/gigascience/giac106. PMID 36310248.
- ↑ "The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)". Nature 452 (7190): 991–6. April 2008. doi:10.1038/nature06856. PMID 18432245. Bibcode: 2008Natur.452..991M.
- ↑ "De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth". The Plant Journal 97 (4): 779–794. February 2019. doi:10.1111/tpj.14159. PMID 30427081.
- ↑ "The genome of Tripterygium wilfordii and characterization of the celastrol biosynthesis pathway" (in en). Gigabyte 2021: 1–30. 2021. doi:10.46471/gigabyte.14. PMID 36967728.
- ↑ "The Gynandropsis gynandra genome provides insights into whole-genome duplications and the evolution of C4 photosynthesis in Cleomaceae". The Plant Cell 35 (5): 1334–1359. April 2023. doi:10.1093/plcell/koad018. PMID 36691724.
- ↑ "The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism". Nature Communications 8 (1): 1899. December 2017. doi:10.1038/s41467-017-01491-7. PMID 29196618. Bibcode: 2017NatCo...8.1899Y.
- ↑ "Draft genome sequence of the Tibetan medicinal herb Rhodiola crenulata". GigaScience 6 (6): 1–5. June 2017. doi:10.1093/gigascience/gix033. PMID 28475810.
- ↑ "The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions". Nature Genetics 45 (1): 51–8. January 2013. doi:10.1038/ng.2470. PMID 23179023.
- ↑ "The genome of melon (Cucumis melo L.)". Proceedings of the National Academy of Sciences of the United States of America 109 (29): 11872–7. July 2012. doi:10.1073/pnas.1205415109. PMID 22753475. Bibcode: 2012PNAS..10911872G.
- ↑ "The genome of the cucumber, Cucumis sativus L". Nature Genetics 41 (12): 1275–81. December 2009. doi:10.1038/ng.475. PMID 19881527.
- ↑ "The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita" (in en). Molecular Plant 12 (4): 506–520. April 2019. doi:10.1016/j.molp.2018.12.023. PMID 30630074.
- ↑ "The domestication of Cucurbita argyrosperma as revealed by the genome of its wild relative". Horticulture Research 8 (1): 109. May 2021. doi:10.1038/s41438-021-00544-9. PMID 33931618.
- ↑ "Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo". GigaScience 7 (6). June 2018. doi:10.1093/gigascience/giy067. PMID 29893829.
- ↑ "Genome of Hippophae rhamnoides provides insights into a conserved molecular mechanism in actinorhizal and rhizobial symbioses". The New Phytologist 235 (1): 276–291. July 2022. doi:10.1111/nph.18017. PMID 35118662.
- ↑ "Draft genome sequence of the rubber tree Hevea brasiliensis". BMC Genomics 14: 75. February 2013. doi:10.1186/1471-2164-14-75. PMID 23375136.
- ↑ "Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L". DNA Research 18 (1): 65–76. February 2011. doi:10.1093/dnares/dsq030. PMID 21149391.
- ↑ Prochnik et al. (2012), J. Tropical Plant Biology
- ↑ "Draft genome sequence of the oilseed species Ricinus communis". Nature Biotechnology 28 (9): 951–6. September 2010. doi:10.1038/nbt.1674. PMID 20729833.
- ↑ "A Chromosome-level Assembly of A Wild Castor Genome Provides New Insights into the Adaptive Evolution in A Tropical Desert". Genomics Proteomics Bioinformatics S1672-0229 (21): 00162–5. July 2021. doi:10.1016/j.gpb.2021.04.003. PMID 34339842.
- ↑ "Long-read sequencing and de novo genome assembly of Ammopiptanthus nanus, a desert shrub". GigaScience 7 (7). July 2018. doi:10.1093/gigascience/giy074. PMID 29917074.
- ↑ "The first draft of the pigeonpea genome sequence". Journal of Plant Biochemistry and Biotechnology 21 (1): 98–112. 2012. doi:10.1007/s13562-011-0088-8. PMID 24431589.
- ↑ "Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers". Nature Biotechnology 30 (1): 83–9. November 2011. doi:10.1038/nbt.2022. PMID 22057054.
- ↑ 90.0 90.1 "The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut". Nature Genetics 48 (4): 438–46. April 2016. doi:10.1038/ng.3517. PMID 26901068.
- ↑ "Insights into amphicarpy from the compact genome of the legume Amphicarpaea edgeworthii". Plant Biotechnology Journal 19 (5): 952–965. 2020. doi:10.1111/pbi.13520. PMID 33236503.
- ↑ "Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement". Nature Biotechnology 31 (3): 240–6. March 2013. doi:10.1038/nbt.2491. PMID 23354103. http://oar.icrisat.org/6444/1/NB_Draftgenome_2013.pdf.
- ↑ "A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.)". The Plant Journal 74 (5): 715–29. June 2013. doi:10.1111/tpj.12173. PMID 23489434.
- ↑ "The chromosome-level draft genome of Dalbergia odorifera". GigaScience 9 (8). August 2020. doi:10.1093/gigascience/giaa084. PMID 32808664.
- ↑ "GigaDB Dataset - DOI 10.5524/101054 - Genomic data of the Apple-Ring Acacia (Faidherbia albida)". http://gigadb.org/dataset/101054.
- ↑ "Genome sequence of the palaeopolyploid soybean". Nature 463 (7278): 178–83. January 2010. doi:10.1038/nature08670. PMID 20075913. Bibcode: 2010Natur.463..178S. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1366&context=agronomyfacpub.
- ↑ "Genomic data of the Hyacinth Bean (Lablab purpureus)". GigaDB Dataset. GigaScience Database. 2018. doi:10.5524/101056.
- ↑ "Genome structure of the legume, Lotus japonicus". DNA Research 15 (4): 227–39. August 2008. doi:10.1093/dnares/dsn008. PMID 18511435.
- ↑ "The Medicago genome provides insight into the evolution of rhizobial symbioses". Nature 480 (7378): 520–4. November 2011. doi:10.1038/nature10625. PMID 22089132. Bibcode: 2011Natur.480..520Y.
- ↑ He, Qinguan; Li, Zhengpeng; Liu, Yanlong; Yang, Hao; Liu, Li; Ren, Yi; Zheng, Jiacheng; Xu, Ronghua et al. (September 2023). "Chromosome‐scale assembly and analysis of Melilotus officinalis genome for SSR development and nodulation genes analysis" (in en). The Plant Genome 16 (3). doi:10.1002/tpg2.20345. ISSN 1940-3372. https://acsess.onlinelibrary.wiley.com/doi/10.1002/tpg2.20345.
- ↑ "Phaseolus vulgaris v1.0". Phytozome v9.1. http://www.phytozome.net/commonbean.php.
- ↑ Sudalaimuthuasari, Naganeeswaran; Ali, Rashid; Kottackal, Martin; Rafi, Mohammed; Al Nuaimi, Mariam; Kundu, Biduth; Al-Maskari, Raja Saeed; Wang, Xuewen et al. (January 2022). "The Genome of the Mimosoid Legume Prosopis cineraria, a Desert Tree" (in en). International Journal of Molecular Sciences 23 (15): 8503. doi:10.3390/ijms23158503. ISSN 1422-0067. PMID 35955640.
- ↑ 103.0 103.1
- "New genes on the block: Neofunctionalization of tandem duplicate genes with putative new functions in Arabidopsis". Plant Physiology (Oxford University Press) 192 (4): 2574–2576. August 2023. doi:10.1093/plphys/kiad271. PMID 37158166.
- This review cites this research.
- "The giant diploid faba genome unlocks variation in a global protein crop". Nature 615 (7953): 652–659. March 2023. doi:10.1038/s41586-023-05791-5. PMID 36890232. Bibcode: 2023Natur.615..652J.
- ↑ Fuller, Tyson; Bickhart, Derek M.; Koch, Lisa M.; Kucek, Lisa Kissing; Ali, Shahjahan; Mangelson, Haley; Monteros, Maria J.; Hernandez, Timothy et al. (2023-11-13). "A reference assembly for the legume cover crop hairy vetch (Vicia villosa)" (in en). Gigabyte 2023: 1–20. doi:10.46471/gigabyte.98. ISSN 2709-4715. PMC 10659084. https://gigabytejournal.com/articles/98.
- ↑ Wirulda, Pootakham; Sonthirod Chutima; Chaiwat, Naktang; Chutintorn, Yundaeng; Yoocha Thippawan; Wasitthee, Kongkachana; Sangsrakru Duangjai; Prakit, Somta et al. (2023) (in en). GigaDB Dataset - DOI 10.5524/102399 - Supporting data for "Genomic data of Vigna hirtella". GigaScience Database. doi:10.5524/102399. http://dx.doi.org/10.5524/102399.
- ↑ 106.0 106.1 Pootakham, Wirulda; Sonthirod, Chutima; Naktang, Chaiwat; Yundaeng, Chutintorn; Yoocha, Thippawan; Kongkachana, Wasitthee; Sangsrakru, Duangjai; Somta, Prakit et al. (2022-12-28). "Genome assemblies of Vigna reflexo-pilosa (créole bean) and its progenitors, Vigna hirtella and Vigna trinervia, revealed homoeolog expression bias and expression-level dominance in the allotetraploid". GigaScience 12. doi:10.1093/gigascience/giad050. ISSN 2047-217X. PMID 37470496. PMC 10357499. https://doi.org/10.1093/gigascience/giad050.
- ↑ Wirulda, Pootakham; Sonthirod Chutima; Chaiwat, Naktang; Chutintorn, Yundaeng; Yoocha Thippawan; Wasitthee, Kongkachana; Sangsrakru Duangjai; Prakit, Somta et al. (2023) (in en). GigaDB Dataset - DOI 10.5524/102398 - Supporting data for "Genomic data of créole bean, Vigna reflexopilosa". GigaScience Database. doi:10.5524/102398. http://dx.doi.org/10.5524/102398.
- ↑ "GigaDB Dataset - DOI 10.5524/101055 - Genomic data of the Bambara Groundnut (Vigna subterranea)". http://gigadb.org/dataset/101055.
- ↑ "Alternative Therapy through Nutrients and Nutraceuticals". Osteoporosis. 2013. pp. 1739–1749. doi:10.1016/B978-0-12-415853-5.00074-1. ISBN 9780124158535. "Red clover is a wild plant belonging to the legume family and is often used to relieve symptoms of menopause, high cholesterol, and osteoporosis."
- ↑ "Chromosome-scale assembly of the highly heterozygous genome of red clover (Trifolium pratense L.), an allogamous forage crop species" (in en). Gigabyte 2022: gigabyte42. 2022-02-18. doi:10.46471/gigabyte.42. PMID 36824517.
- ↑ "Chromosome-level assembly of the common vetch (Vicia sativa) reference genome" (in en). Gigabyte 2022: gigabyte38. 2022-01-31. doi:10.46471/gigabyte.38. PMID 36824524.
- ↑ "A chromosome-scale draft genome sequence of horsegram (Macrotyloma uniflorum)" (in en). Gigabyte 2021: gigabyte30. 2021-10-08. doi:10.46471/gigabyte.30. PMID 36824333.
- ↑ "Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima)". GigaScience 8 (9). September 2019. doi:10.1093/gigascience/giz112. PMID 31513707.
- ↑ "Oak genome reveals facets of long lifespan". Nature Plants 4 (7): 440–452. July 2018. doi:10.1038/s41477-018-0172-3. PMID 29915331.
- ↑ 115.0 115.1 "The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition". GigaScience 8 (5). May 2019. doi:10.1093/gigascience/giz036. PMID 31049561.
- ↑ "The Manchurian Walnut Genome: Insights into Juglone and Lipid Biosynthesis". GigaScience 11. June 2022. doi:10.1093/gigascience/giac057. PMID 35764602.
- ↑ "A high-quality walnut genome assembly reveals extensive gene expression divergences after whole-genome duplication". Plant Biotechnology Journal 18 (9): 1848–1850. January 2020. doi:10.1111/pbi.13350. PMID 32004401.
- ↑ "Chromosomal-level assembly of Juglans sigillata genome using Nanopore, BioNano, and Hi-C analysis". GigaScience 9 (2). February 2020. doi:10.1093/gigascience/giaa006. PMID 32101299.
- ↑ "The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads". The Plant Journal 72 (3): 461–73. November 2012. doi:10.1111/j.1365-313X.2012.05093.x. PMID 22757964. https://zenodo.org/record/897213.
- ↑ "De novo genome assembly of the red silk cotton tree (Bombax ceiba)". GigaScience 7 (5). May 2018. doi:10.1093/gigascience/giy051. PMID 29757382.
- ↑ "The draft genome of tropical fruit durian (Durio zibethinus)". Nature Genetics 49 (11): 1633–1641. November 2017. doi:10.1038/ng.3972. PMID 28991254.
- ↑ "Gossypium raimondii v2.1". Phytozome v9.1. http://www.phytozome.net/cotton.php.
- ↑ "The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color". Genome Biology 14 (6): r53. June 2013. doi:10.1186/gb-2013-14-6-r53. PMID 23731509.
- ↑ "Theobroma cacao L., provide insights into its domestication process". Communications Biology 1 (1): 167. 2018-10-16. doi:10.1038/s42003-018-0168-6. PMID 30345393.
- ↑ "A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica". BMC Genomics 13: 464. September 2012. doi:10.1186/1471-2164-13-464. PMID 22958331.
- ↑ "De novo sequencing and assembly ofAzadirachta indica fruit transcriptome". Current Science 101 (12): 1553–61. 25 December 2011. http://www.currentscience.ac.in/Volumes/101/12/1553.pdf.
- ↑ "A chromosome-level genome assembly of Artocarpus nanchuanensis (Moraceae), an extremely endangered fruit tree". GigaScience 11. June 2022. doi:10.1093/gigascience/giac042. PMID 35701376.
- ↑ "Genomic data of the Horseradish Tree (Moringa oleifera)". GigaDB Dataset. GigaScience Database. 2018. doi:10.5524/101058.
- ↑ "The genome of Eucalyptus grandis". Nature 510 (7505): 356–62. June 2014. doi:10.1038/nature13308. PMID 24919147. Bibcode: 2014Natur.510..356M.
- ↑ "The draft nuclear genome assembly of Eucalyptus pauciflora: a pipeline for comparing de novo assemblies". GigaScience 9 (1). January 2020. doi:10.1093/gigascience/giz160. PMID 31895413.
- ↑ "A high-quality draft genome for Melaleuca alternifolia (tea tree): a new platform for evolutionary genomics of myrtaceous terpene-rich species". Gigabyte 1: gigabyte28. 2021. doi:10.46471/gigabyte.28. PMID 36824337.
- ↑ Wu, Shasha; Sun, Wei; Xu, Zhichao; Zhai, Junwen; Li, Xiaoping; Li, Chengru; Zhang, Diyang; Wu, Xiaoqian et al. (2020-06-01). "The genome sequence of star fruit (Averrhoa carambola)" (in en). Horticulture Research 7 (1): 95. doi:10.1038/s41438-020-0307-3. ISSN 2052-7276. PMID 32528707.
- ↑ "Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome". GigaScience 9 (3). March 2020. doi:10.1093/gigascience/giaa015. PMID 32141509.
- ↑ "The genome of woodland strawberry (Fragaria vesca)". Nature Genetics 43 (2): 109–16. February 2011. doi:10.1038/ng.740. PMID 21186353.
- ↑ "Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe". PNAS 118 (20): e2101767118. May 2021. doi:10.1073/pnas.2101767118. ISSN 0027-8424. PMID 33986115. Bibcode: 2021PNAS..11801767S.
- ↑ "The genome of the domesticated apple (Malus × domestica Borkh.)". Nature Genetics 42 (10): 833–9. October 2010. doi:10.1038/ng.654. PMID 20802477.
- ↑ 137.0 137.1 137.2 "Four Rosaceae Genomes Released". Gramene: A Resource for Comparative Plant Genomics. 11 June 2013. http://news.gramene.org/node/195.
- ↑ "The genome of Prunus mume". Nature Communications 3: 1318. 2012. doi:10.1038/ncomms2290. PMID 23271652. Bibcode: 2012NatCo...3.1318Z.
- ↑ "The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution". Nature Genetics 45 (5): 487–94. May 2013. doi:10.1038/ng.2586. PMID 23525075.
- ↑ "Chromosome-level draft genome of a diploid plum (Prunus salicina)". GigaScience 9 (12). December 2020. doi:10.1093/gigascience/giaa130. PMID 33300949.
- ↑ "The genome of the pear (Pyrus bretschneideri Rehd.)". Genome Research 23 (2): 396–408. February 2013. doi:10.1101/gr.144311.112. PMID 23149293.
- ↑ "A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome". GigaScience 7 (8). August 2018. doi:10.1093/gigascience/giy094. PMID 30107523.
- ↑ 143.0 143.1 "Citrus clementina". Phytozome v9.1. http://www.phytozome.net/clementine.php.
- ↑ "The draft genome of sweet orange (Citrus sinensis)". Nature Genetics 45 (1): 59–66. January 2013. doi:10.1038/ng.2472. PMID 23179022.
- ↑ "The Clausena lansium (Wampee) genome reveal new insights into the carbazole alkaloids biosynthesis pathway". Genomics 113 (6): 3696–3704. November 2021. doi:10.1016/j.ygeno.2021.09.007. PMID 34520805.
- ↑ "The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)". Science 313 (5793): 1596–604. September 2006. doi:10.1126/science.1128691. PMID 16973872. Bibcode: 2006Sci...313.1596T. https://escholarship.org/content/qt3101x2rn/qt3101x2rn.pdf?t=li5dgw.
- ↑ "The draft genome sequence of a desert tree Populus pruinosa". GigaScience 6 (9): 1–7. September 2017. doi:10.1093/gigascience/gix075. PMID 28938721.
- ↑ "The Acer truncatum genome provides insights into the nervonic acid biosynthesis". The Plant Journal 104 (3): 662–678. August 2020. doi:10.1111/tpj.14954. PMID 32772482.
- ↑ "De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China". GigaScience 8 (7). July 2019. doi:10.1093/gigascience/giz085. PMID 31307060.
- ↑ "Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics". GigaScience 6 (5): 1–14. May 2017. doi:10.1093/gigascience/gix023. PMID 28368449.
- ↑ "Pseudomolecule-level assembly of the Chinese oil tree yellowhorn (Xanthoceras sorbifolium) genome". GigaScience 8 (6). June 2019. doi:10.1093/gigascience/giz070. PMID 31241154.
- ↑ "The genome assembly and annotation of yellowhorn (Xanthoceras sorbifolium Bunge)". GigaScience 8 (6). June 2019. doi:10.1093/gigascience/giz071. PMID 31241155.
- ↑ "Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family". GigaScience 9 (3). March 2020. doi:10.1093/gigascience/giaa013. PMID 32118265.
- ↑ "The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla". Nature 449 (7161): 463–7. September 2007. doi:10.1038/nature06148. PMID 17721507. Bibcode: 2007Natur.449..463J.
- ↑ "A draft genome and transcriptome of common milkweed (Asclepias syriaca) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae". PeerJ 7: e7649. 2019-09-20. doi:10.7717/peerj.7649. PMID 31579586.
- ↑ "Hybrid de novo genome assembly of the Chinese herbal fleabane Erigeron breviscapus". GigaScience 6 (6): 1–7. June 2017. doi:10.1093/gigascience/gix028. PMID 28431028.
- ↑ "The Sunflower Genome Database". https://www.sunflowergenome.org/.
- ↑ "The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution". Nature 546 (7656): 148–152. 2017. doi:10.1038/nature22380. PMID 28538728. Bibcode: 2017Natur.546..148B.
- ↑ "Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce". Nature Communications 8: 14953. 2017. doi:10.1038/ncomms14953. PMID 28401891. Bibcode: 2017NatCo...814953R.
- ↑ "Genome assembly of the Pink Ipê (Handroanthus impetiginosus, Bignoniaceae), a highly valued, ecologically keystone Neotropical timber forest tree". GigaScience 7 (1): 1–16. January 2018. doi:10.1093/gigascience/gix125. PMID 29253216.
- ↑ "Diospyros oleifera Cheng) genome provides new insights into the inheritance of astringency and ancestral evolution". Horticulture Research 6 (1): 138. 2019-12-18. doi:10.1038/s41438-019-0227-2. PMID 31871686.
- ↑ "A high-quality chromosomal genome assembly of Diospyros oleiferaCheng". GigaScience 9 (1). January 2020. doi:10.1093/gigascience/giz164. PMID 31944244.
- ↑ "Hybrid de novo genome assembly of the Chinese herbal plant danshen (Salvia miltiorrhiza Bunge)". GigaScience 4 (1): 62. 2015-12-01. doi:10.1186/s13742-015-0104-3. PMID 26673920.
- ↑ "Generation of a chromosome-scale genome assembly of the insect-repellent terpenoid-producing Lamiaceae species, Callicarpa americana". GigaScience 9 (9). September 2020. doi:10.1093/gigascience/giaa093. PMID 32893861.
- ↑ "Draft Genome Sequence of Mentha longifolia and Development of Resources for Mint Cultivar Improvement" (in en). Molecular Plant 10 (2): 323–339. February 2017. doi:10.1016/j.molp.2016.10.018. PMID 27867107.
- ↑ "A chromosomal-scale genome assembly of Tectona grandis reveals the importance of tandem gene duplication and enables discovery of genes in natural product biosynthetic pathways". GigaScience 8 (3). March 2019. doi:10.1093/gigascience/giz005. PMID 30698701.
- ↑ "Architecture and evolution of a minute plant genome". Nature 498 (7452): 94–8. June 2013. doi:10.1038/nature12132. PMID 23665961. Bibcode: 2013Natur.498...94I.
- ↑ "De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin". GigaScience 6 (9): 1–7. September 2017. doi:10.1093/gigascience/gix065. PMID 28922823.
- ↑ "Genomic analyses of a "living fossil": The endangered dove-tree". Molecular Ecology Resources 20 (3): 756–769. January 2020. doi:10.1111/1755-0998.13138. PMID 31970919.
- ↑ "Mimulus guttatus". Phytozome v9.1. http://www.phytozome.net/mimulus.php.
- ↑ "Primula vulgaris (primrose) genome assembly, annotation and gene expression, with comparative genomics on the heterostyly supergene". Scientific Reports 8 (1): 17942. December 2018. doi:10.1038/s41598-018-36304-4. PMID 30560928. Bibcode: 2018NatSR...817942C.
- ↑ "A highly contiguous, scaffold-level nuclear genome assembly for the fever tree (Cinchona pubescens Vahl) as a novel resource for Rubiaceae research" (in en). Gigabyte 2022: gigabyte71. 2022-10-06. doi:10.46471/gigabyte.71. PMID 36950143.
- ↑ "Details for species Solanum lycopersicum". Sol Genomics Network. http://solgenomics.net/organism/1/view/.
- ↑ 174.0 174.1 Tomato Genome Consortium (May 2012). "The tomato genome sequence provides insights into fleshy fruit evolution". Nature 485 (7400): 635–41. doi:10.1038/nature11119. PMID 22660326. Bibcode: 2012Natur.485..635T.
- ↑ "Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome". GigaScience 8 (10). 2019-10-01. doi:10.1093/gigascience/giz115. PMID 31574156.
- ↑ "Spud DB". http://solanaceae.plantbiology.msu.edu/index.shtml.
- ↑ "Genome sequence and analysis of the tuber crop potato". Nature 475 (7355): 189–95. July 2011. doi:10.1038/nature10158. PMID 21743474.
- ↑ "Genome Reduction Uncovers a Large Dispensable Genome and Adaptive Role for Copy Number Variation in Asexually Propagated Solanum tuberosum". The Plant Cell 28 (2): 388–405. February 2016. doi:10.1105/tpc.15.00538. PMID 26772996.
- ↑ "The Solanum commersonii Genome Sequence Provides Insights into Adaptation to Stress Conditions and Genome Evolution of Wild Potato Relatives". The Plant Cell 27 (4): 954–68. April 2015. doi:10.1105/tpc.114.135954. PMID 25873387.
- ↑ "Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris". Nature Communications 9 (1): 2515. June 2018. doi:10.1038/s41467-018-04344-z. PMID 29955043. Bibcode: 2018NatCo...9.2515V.
- ↑ "Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis". Nature Communications 9 (1): 2683. July 2018. doi:10.1038/s41467-018-04721-8. PMID 29992948. Bibcode: 2018NatCo...9.2683S.
- ↑ "A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research". Molecular Plant-Microbe Interactions 25 (12): 1523–30. December 2012. doi:10.1094/MPMI-06-12-0148-TA. PMID 22876960.
- ↑ 183.0 183.1 "Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis". Genome Biology 14 (6): R60. June 2013. doi:10.1186/gb-2013-14-6-r60. PMID 23773524.
- ↑ "Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species". Nature Genetics 46 (3): 270–8. March 2014. doi:10.1038/ng.2877. PMID 24441736.
- ↑ 185.0 185.1 "Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization". Proceedings of the National Academy of Sciences of the United States of America 111 (14): 5135–40. April 2014. doi:10.1073/pnas.1400975111. PMID 24591624. Bibcode: 2014PNAS..111.5135Q.
- ↑ "The Petunia Platform". http://www.petuniaplatform.net/.
- ↑ "Reference genome sequence of the model plant Setaria". Nature Biotechnology 30 (6): 555–61. May 2012. doi:10.1038/nbt.2196. PMID 22580951.
- ↑ "Genome sequence of the progenitor of the wheat D genome Aegilops tauschii". Nature 551 (7443): 498–502. November 2017. doi:10.1038/nature24486. PMID 29143815. Bibcode: 2017Natur.551..498L.
- ↑ "Genome assembly of an Australian native grass species reveals a recent whole-genome duplication and biased gene retention of genes involved in stress response". GigaScience 12. December 2022. doi:10.1093/gigascience/giad034. PMID 37171129.
- ↑ The International Brachypodium Initiative (February 2010). "Genome sequencing and analysis of the model grass Brachypodium distachyon". Nature 463 (7282): 763–8. doi:10.1038/nature08747. PMID 20148030. Bibcode: 2010Natur.463..763T.
- ↑ "The Coix Genome Provides Insights into Panicoideae Evolution and Papery Hull Domestication". Molecular Plant 13 (2): 309–320. February 2020. doi:10.1016/j.molp.2019.11.008. PMID 31778843.
- ↑ "3 panicoid grass species Dichanthelium oligosanthes". Genome Biology 17 (1): 223. October 2016. doi:10.1186/s13059-016-1080-3. PMID 27793170.
- ↑ "Genome sequence and genetic diversity analysis of an under-domesticated orphan crop, white fonio (Digitaria exilis)". GigaScience 10 (3). March 2021. doi:10.1093/gigascience/giab013. PMID 33710327.
- ↑ "A high-quality genome of Eragrostis curvula grass provides insights into Poaceae evolution and supports new strategies to enhance forage quality". Scientific Reports 9 (1): 10250. July 2019. doi:10.1038/s41598-019-46610-0. PMID 31308395. Bibcode: 2019NatSR...910250C.
- ↑ "A physical, genetic and functional sequence assembly of the barley genome". Nature 491 (7426): 711–6. November 2012. doi:10.1038/nature11543. PMID 23075845. Bibcode: 2012Natur.491..711T. http://ousar.lib.okayama-u.ac.jp/files/public/4/49077/20160528095302759502/Nature_491_711–716.pdf.
- ↑ "A chromosome conformation capture ordered sequence of the barley genome". Nature 544 (7651): 427–433. April 2017. doi:10.1038/nature22043. PMID 28447635. Bibcode: 2017Natur.544..427M.
- ↑ "Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution". Nature Communications 4: 1595. 2013. doi:10.1038/ncomms2596. PMID 23481403. Bibcode: 2013NatCo...4.1595C.
- ↑ "Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza". The Plant Journal 63 (6): 990–1003. September 2010. doi:10.1111/j.1365-313X.2010.04293.x. PMID 20626650.
- ↑ "A map of rice genome variation reveals the origin of cultivated rice". Nature 490 (7421): 497–501. October 2012. doi:10.1038/nature11532. PMID 23034647. Bibcode: 2012Natur.490..497H.
- ↑ "Sequencing the rice genome". The Plant Cell 12 (11): 2011–7. November 2000. doi:10.1105/tpc.12.11.2011. PMID 11090205.
- ↑ "A draft sequence of the rice genome (Oryza sativa L. ssp. indica)". Science 296 (5565): 79–92. April 2002. doi:10.1126/science.1068037. PMID 11935017. Bibcode: 2002Sci...296...79Y.
- ↑ "A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)". Science 296 (5565): 92–100. April 2002. doi:10.1126/science.1068275. PMID 11935018. Bibcode: 2002Sci...296...92G.
- ↑ "Panicum virgatum". Phytozome v9.1. http://www.phytozome.net/panicumvirgatum.php.
- ↑ Robbins, Matthew D; Bushman, B Shaun; Huff, David R; Benson, Christopher W; Warnke, Scott E; Maughan, Chase A; Jellen, Eric N; Johnson, Paul G et al. (2022-12-28). "Chromosome-Scale Genome Assembly and Annotation of Allotetraploid Annual Bluegrass (Poa annua L.)". Genome Biology and Evolution 15 (1). doi:10.1093/gbe/evac180. ISSN 1759-6653. PMID 36574983. PMC 9838796. http://dx.doi.org/10.1093/gbe/evac180.
- ↑ 205.0 205.1 Benson, Christopher W.; Sheltra, Matthew R.; Maughan, Peter J.; Jellen, Eric N.; Robbins, Matthew D.; Bushman, B. Shaun; Patterson, Eric L.; Hall, Nathan D. et al. (2023-06-26). "Homoeologous evolution of the allotetraploid genome of Poa annua L.". BMC Genomics 24 (1): 350. doi:10.1186/s12864-023-09456-5. ISSN 1471-2164. PMID 37365554.
- ↑ "A happy accident: a novel turfgrass reference genome". G3 13 (6). June 2023. doi:10.1093/g3journal/jkad073. PMID 37002915.
- ↑ "The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)". Nature Genetics 45 (4): 456–61, 461e1-2. April 2013. doi:10.1038/ng.2569. PMID 23435089.
- ↑ "Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)". GigaScience 7 (10). October 2018. doi:10.1093/gigascience/giy115. PMID 30202850.
- ↑ "The Sorghum bicolor genome and the diversification of grasses". Nature 457 (7229): 551–6. January 2009. doi:10.1038/nature07723. PMID 19189423. Bibcode: 2009Natur.457..551P.
- ↑ "Shifting the limits in wheat research and breeding using a fully annotated reference genome". Science 361 (6403): 705. August 2018. doi:10.1126/science.aar7191. PMID 30115783. http://research-repository.uwa.edu.au/en/publications/shifting-the-limits-in-wheat-research-and-breeding-using-a-fully-annotated-reference-genome(8883a580-b33c-4558-b37f-291af8c61c84).html.
- ↑ "Draft genome of the wheat A-genome progenitor Triticum urartu". Nature 496 (7443): 87–90. April 2013. doi:10.1038/nature11997. PMID 23535596. Bibcode: 2013Natur.496...87L.
- ↑ "Maize Sequence". Gramene. http://www.maizesequence.org/Zea_mays/Info/Index?db=core.
- ↑ "The B73 maize genome: complexity, diversity, and dynamics". Science 326 (5956): 1112–5. November 2009. doi:10.1126/science.1178534. PMID 19965430. Bibcode: 2009Sci...326.1112S. https://dr.lib.iastate.edu/bitstreams/deb93473-1f37-4179-9c23-14c9efe2ec9e/download.
- ↑ "Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments". Nature Biotechnology 35 (10): 969–976. September 2017. doi:10.1038/nbt.3943. PMID 28922347.
- ↑ 215.0 215.1 "The pineapple genome and the evolution of CAM photosynthesis". Nature Genetics 47 (12): 1435–42. December 2015. doi:10.1038/ng.3435. PMID 26523774.
- ↑ "The banana (Musa acuminata) genome and the evolution of monocotyledonous plants". Nature 488 (7410): 213–7. August 2012. doi:10.1038/nature11241. PMID 22801500. Bibcode: 2012Natur.488..213D.
- ↑ "A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids". BMC Genomics 14: 683. October 2013. doi:10.1186/1471-2164-14-683. PMID 24094114.
- ↑ "Musa balbisiana genome reveals subgenome evolution and functional divergence". Nature Plants 1 (8): 810–821. July 2019. doi:10.1038/s41477-019-0452-6. PMID 31308504.
- ↑ Wang, Zheng-Feng; Rouard, Mathieu; Droc, Gaetan; Heslop-Harrison, Pat (J S); Ge, Xue-Jun (2022-12-28). "Genome assembly ofMusa beccariishows extensive chromosomal rearrangements and genome expansion during evolution of Musaceae genomes". GigaScience 12. doi:10.1093/gigascience/giad005. ISSN 2047-217X. PMID 36807539. PMC 9941839. https://doi.org/10.1093/gigascience/giad005.
- ↑ 220.0 220.1 "The chromosome-level genome assemblies of two rattans (Calamus simplicifolius and Daemonorops jenkinsiana)". GigaScience 7 (9). September 2018. doi:10.1093/gigascience/giy097. PMID 30101322.
- ↑ "The genome draft of coconut (Cocos nucifera)". GigaScience 6 (11): 1–11. November 2017. doi:10.1093/gigascience/gix095. PMID 29048487.
- ↑ "De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera)". Nature Biotechnology 29 (6): 521–7. May 2011. doi:10.1038/nbt.1860. PMID 21623354.
- ↑ "Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds". Nature 500 (7462): 335–9. August 2013. doi:10.1038/nature12309. PMID 23883927. Bibcode: 2013Natur.500..335S.
- ↑ "The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle". Nature Communications 5: 3311. 2014. doi:10.1038/ncomms4311. PMID 24548928. Bibcode: 2014NatCo...5.3311W.
- ↑ "First De novo whole genome sequencing and assembly of mutant Dendrobium hybrid cultivar 'Emma White'" (in en). Gigabyte 2022: gigabyte66. 2022-08-09. doi:10.46471/gigabyte.66. PMID 36824506.
- ↑ "The genome sequence of the orchid Phalaenopsis equestris". Nature Genetics 47 (1): 65–72. January 2015. doi:10.1038/ng.3149. PMID 25420146.
- ↑ "Genome assembly of the bearded iris, Iris pallida Lam." (in en). Gigabyte 2023: gigabyte94. 2023-10-05. doi:10.46471/gigabyte.94. ISSN 2709-4715. PMID 37829656. PMC 10565908. https://gigabytejournal.com/articles/94.
- ↑ 228.0 228.1 "The Complete Genome Sequences of Iris sibirica and Iris virginica (Iridaceae, Asparagales)". Biodiversity Genomes 2023. 2023-03-05. doi:10.56179/001c.72791. PMID 36936674.
- ↑ 229.0 229.1 "Comparative genomics of two jute species and insight into fibre biogenesis". Nature Plants 3 (2): 16223. January 2017. doi:10.1038/nplants.2016.223. PMID 28134914.
- ↑ "Corchorus olitorius cv. JRO-524 (Navin)". Genomics Data 12: 151–154. June 2017. doi:10.1016/j.gdata.2017.05.007. PMID 28540183.
- ↑ "Welcome to the British Ash Tree Genome Project". The British Ash Tree Genome Project. The School of Biological & Chemical Sciences. http://www.ashgenome.org.
- ↑ "Ash genome reveals fungus resistance". BBC News. 2013-06-16. https://www.bbc.co.uk/news/science-environment-22913111.
Original source: https://en.wikipedia.org/wiki/List of sequenced plant genomes.
Read more |