Biology:List of sequenced plant genomes

From HandWiki

This list of sequenced plant genomes contains plant species known to have publicly available complete genome sequences that have been assembled, annotated and published. Unassembled genomes are not included, nor are organelle only sequences. For all kingdoms, see the list of sequenced genomes.

Algae

Unicellular photosynthetic eukaryotes. For a more complete list, see List of sequenced algae genomes.

Organism strain Clade Relevance Genome size Number of genes predicted Organization Year of completion Assembly status Links
Aureococcus anophagefferens Heterokont Harmful Algal Bloom 50.1 Mb 11,522 Joint Genome Institute 2011[1] The Greenhouse[2]
Auxenochlorella protothecoides Green Algae Biofuels 22.9 Mb 7,039 Tsinghua University 2014[3] The Greenhouse[2]
Bathycoccus prasinos RCC1105 Green algae Comparative analysis 15 Mb Joint Genome Institute 2012[4]
Bigelowiella natans SAR (Rhizaria) 91.4 Mb 21,708 Dalhousie University 2012[5] The Greenhouse[2]
Chlamydomonas reinhardtii CC-503 cw92 mt+ Green algae Model organism 111 Mb 17,737 University of California at Los Angeles[6] 2007 "Chlamydomonas reinhardtii". National Center for Biotechnology Information (NCBI). https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=3055.  Template:ENA
Chlorella sorokiniana str. 1228 Green Algae Biofuels 61.4 Mb Los Alamos National Lab 2018[7] The Greenhouse[2]
Chlorella sorokiniana UTEX 1230 Green Algae Biofuels 58.5 Mb Los Alamos National Lab 2018[8] The Greenhouse[2]
Chlorella sorokiniana DOE1412 Green Algae Biofuels 57.8 Mb Los Alamos National Lab 2018[9] The Greenhouse[2]
Chlorella variabilis NC64A Green algae 2010[10]
Chlorella vulgaris Green Algae Biofuels 37.3 Mb Nagoya University 1997[11] The Greenhouse[2]
Chondrus crispus Red algae (Rhodophyte) 105 Mb 9,606 Genoscope/Station Biologique de Roscoff 2013[12]
Chrysochromulina parva Haptophyte Biofuels 65.8 Mb Los Alamos National Lab 2018[13] The Greenhouse[2]
Chrysochromulina tobinii Haptophyte Model Organism, Biofuels 59 Mb 16,777 Los Alamos National Lab 2015[14] The Greenhouse[2]
Coccomyxa subellipsoidea sp. C-169 Green algae Model biofuel Joint Genome Institute 2007[15]
Cyanidioschyzon merolae Strain:10D Red algae (Rhodophyte) Photo-autotrophic 16.73 Mb 5,017 2004,[16] 2007[17]
Cyanophora paradoxa Glaucophyte Rutgers University[18] 2012[18]
Dunaliella salina CCAP19/18 Green algae Halophilic, biofuel and beta-carotene production 343.7 Mb 16,697 Joint Genome Institute 2017[19][20] Dunaliella Salina Genome Portal. Phytozome
Ectocarpus siliculosus Brown algae (Heterokontophyta) distantly related to plants Station Biologique de Roscoff 2010[21]
Emiliania huxleyi Haptophyte Marine phytoplankton 167.7 Mb 39,126 Joint Genome Institute 2013[22] The Greenhouse[2]
Eudorina sp. Green algae Multicellular alga, model organism 184 Mb (female)

168 Mb (male)

University of Tokyo 2018[23]
Galdieria sulphuraria Red algae (Rhodophyte) Thermo-acidophilic (extremophile) 13.7 Mb 6,623 2005[24] 2005[25] 2013[26]
Guillardia theta Cryptomonad Eukaryote Endosymbiosis 87.1 Mb Dalhousie University 2012[5] The Greenhouse[2]
Micromonas pusilla CCMP1545 Green algae Marine phytoplankton Joint Genome Institute 2007[27][28]
Micromonas pusilla RCC299/NOUM17 Green algae Marine phytoplankton Joint Genome Institute 2007[28][29]
Monoraphidium neglectum Green Algae Biofuels 69.7 Mb Joint Genome Institute 2017[30] The Greenhouse[2]
Nannochloropsis gaditana SAR (Heterokont) Biofuels 34.0 Mb Colorado School of Mines 2012[31] The Greenhouse[2]
Nannochloropsis oceanica SAR (Heterokont) Biofuels 31.5 Mb Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology 2016[32] The Greenhouse[2]
Nannochloropsis Salina CCMP1776 SAR (Heterokont) Biofuels, Feedstock 24.4 Mb Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology 2016[33] The Greenhouse[2]
Ostreococcus lucimarinus CCE9901 Green algae Simple eukaryote, small genome 13.2 Mb 7,796 2007[34]
Ostreococcus tauri OTH95 Green algae Simple eukaryote, small genome 2006[35]
Ostreococcus sp. RCC809 Green algae 7,773 Joint Genome Institute 2008[36]
Phaeodactylum tricornutum SAR (Heterokont) 27.4 Mb 10,402 Diatom Consortium 2008[37] The Greenhouse[2]
Picochlorum soloecismus DOE101 Green algae Biofuels 15.3 Mb Los Alamos National Lab 2017[38] The Greenhouse[2]
Picochlorum sp. Green algae Biofuels 13.3 Mb 7,367 Rutgers University 2014[39] The Greenhouse[2]
Porphyridium purpureum Red algae (Rhodophyte) 19.7 Mb 8,355 2013[40]
Pyropia yezoensis Red algae (Rhodophyte) 43 Mb 10,327 2013[41]
Saccharina japonica SAR (Heterokont) Brown Algae Crop 543.4 Mb Chinese Academy of Sciences, Beijing Institutes of Life Science 2015[42] The Greenhouse[2]
Scenedesmus obliquus strain DOE0152Z Green Algae Biofuels 210.3 Mb Brooklyn College 2017[43] The Greenhouse[2]
Tetraselmis sp. Green Algae Biofuels 228 Mb Los Alamos National Lab 2018[2] The Greenhouse[2]
Thalassiosira oceanica CCMP1005 SAR (Heterokont) model organism 92.2 Mb 34,642 The Future Ocean 2012[44]
Thalassiosira pseudonana SAR (Heterokont) 32.4 Mb Diatom Consortium 2009[45] The Greenhouse[2]
Volvox carteri Green algae Multicellular alga, model organism ~131.2 Mb 14,971 2010[46]
Yamagishiella unicocca Green algae Multicellular alga, model organism ~140 Mb The University of Tokyo 2018[23]

Bryophytes

Organism strain Division Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Physcomitrella patens ssp. patens str. Gransden 2004 Bryophytes Early diverging land plant 2008[47]
Marchantia polymorpha Bryophytes Early diverging land plant 225.8 Mb 19,138 2017[48]

Higher plants (vascular plants)

Organism strain Division Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Selaginella moellendorffii Lycopodiophyta Model organism 2011[49][50]

Ferns

Organism strain Division Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Azolla filiculoides Polypodiophyta Fern 0.75 Gb 20,201 2018[51]
Salvinia cucullata Polypodiophyta Fern 0.26 Gb 19,914 2018[51]

Gymnosperms

Organism strain Division Relevance Genome size Number of genes predicted No of chromosomes Organization Year of completion Assembly status
Picea abies (Norway spruce) Pinales Timber, tonewood, ornamental such as Christmas tree 19.6 Gb 26,359[52] 12 Umeå Plant Science Centre / SciLifeLab, Sweden 2013[53]
Picea glauca (White spruce) Pinales Timber, Pulp 20.8 Gb 14,462[52] 12 Institutional Collaboration 2013[54][55]
Pinus taeda (Loblolly pine) Pinales Timber 20.15 Gb 9,024[52] 12 2014[56][57][58] N50 scaffold size: 66.9 kbp
Pinus lambertiana (Sugar pine) Pinales Timber; with the largest genomes among the pines;

the largest pine species

31 Gb 13,936 12 2016[52] 61.5X sequence coverage, platforms used:

Hiseq 2000, Hiseq 2500, GAIIx, MiSeq

Ginkgo biloba Ginkgoales 11.75 Gb 41,840 2016[59] N50 scaffold size: 48.2 kbp
Pseudotsuga menziesii Pinales 16 Gb 54,830 13 2017[60] N50 scaffold size : 340.7 kbp
Gnetum monatum Gnetales 4.07 Gb 27,491 2018[61]

Angiosperms

Amborellales

Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Amborella trichopoda Amborellaceae Basal angiosperm 2013[62][63]

Eudicots

Proteales
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Nelumbo nucifera (sacred lotus) Nelumbonaceae Basal eudicot 929 Mbp 2013[64] contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp
Ranunculales
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Aquilegia coerulea Ranunculaceae Basal eudicot Unpublished[65]
Trochodendrales
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Trochodendron aralioides (Wheel tree) Trochodendrales Basal eudicot having secondary xylem without vessel elements 1.614 Gb 35,328 Guangxi University 2019[66] 19 scaffolds corresponding to 19 chromosomes
Caryophyllales
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Beta vulgaris (sugar beet) Chenopodiaceae Crop plant 714–758 Mbp 27,421 2013[67]
Chenopodium quinoa Chenopodiaceae Crop plant 1.39–1.50 Gb 44,776 2017[68] 3,486 scaffolds, scaffold N50 of 3.84 Mb, 90% of the assembled genome is contained in 439 scaffolds[68]
Amaranthus hypocondriacus Amaranthaceae Crop plant 403.9 Mb 23,847 2016[69] 16 large scaffolds from 16.9 to 38.1 Mb. N50 and L50 of the assembly was 24.4 Mb and 7, respectively.[70]
Carnegiea gigantea Cactaceae Wild plant 1.40 Gb 28,292 2017[71] 57,409 scaffolds, scaffold N50 of 61.5 kb[71]
Suaeda aralocaspica Amaranthaceae Performs complete C4 photosynthesis within individual cells (SCC4) 467 Mb 29,604 ABLife Inc. 2019[72] 4,033 scaffolds, scaffold N50 length of 1.83 Mb
Simmondsia chinensis (jojoba) Simmondsiaceae Oilseed Crop 887 Mb 23,490 2020[73] 994 scaffolds, scaffold N50 length of 5.2 Mb
Rosids
Organism strain Family Relevance Genome size Number of genes predicted No of chromosomes Organization Year of completion Assembly status
Sclerocarya birrea

(Marula)

Anacardiaceae Used for food 18,397 2018[74][75]
Betula pendula (silver birch) Betulaceae Boreal forest tree, model for forest biotechnology 435 Mbp[76] 28,399 14 University of Helsinki 2017[76] 454/Illumina/PacBio. Assembly size 435 Mbp. Contig N50: 48,209 bp, scaffold N50: 239,796 bp. 89% of the assembly mapped to 14 pseudomolecules. Additionally 150 birch individuals sequenced.
Betula nana (dwarf birch) Betulaceae Arctic shrub 450 Mbp QMUL/SBCS 2013[77]
Aethionema arabicum Brassicaceae Comparative analysis of crucifer genomes 2013[78]
Arabidopsis lyrata ssp. lyrata strain MN47 Brassicaceae Model plant 206.7 Mbp 32,670[79] 8 2011[79] 8.3X sequence coverage, analyzed on ABI 3730XL capillary sequencers
Arabidopsis thaliana Ecotype:Columbia Brassicaceae Model plant 135 Mbp 27,655[80] 5 AGI 2000[81]
Barbarea vulgaris

G-type

Brassicaceae Model plant for specialised metabolites and plant defenses 167.7 Mbp 25,350 8 2017[82] 66.5 X coverage with Illumina GA II technology
Brassica rapa ssp. pekinensis (Chinese cabbage) accession Chiifu-401-42 Brassicaceae Assorted crops and model organism 485 Mbp 41,174 (has undergone genome triplication) 10 The Brassica rapa Genome Sequencing Project Consortium 2011[83] 72X coverage of paired short read sequences generated by Illumina GA II technology
Brassica napus (Oilseed rape or rapeseed) European winter oilseed cultivar ‘Darmor-bzh' Brassicaceae Crops 1130 Mbp 101,040 19 Institutional Collaboration 2014[84] 454 GS-FLX+ Titanium (Roche, Basel, Switzerland) and Sanger sequencing. Correction and gap filling used 79 Gb of Illumina (San Diego, CA) HiSeq sequence.
Capsella rubella Brassicaceae Close relative of Arabidopsis thaliana 130 Mbp 26,521 JGI 2013?[85] 2013[86]
Cardamine hirsuta (hairy bittercress) strain ‘Oxford’ Brassicaceae A model system for studies in evolution of plant development 198 Mbp 29,458 8 Max Planck Institute for Plant Breeding Research, Köln, Germany 2016[87] Shotgun sequencing strategy, combining paired end reads (197× assembled sequence coverage) and mate pair reads (66× assembled) from Illumina HiSeq (a total of 52 Gbp raw reads).
Eutrema salsugineum Brassicaceae A relative of arabidopsis with high salt tolerance 240 Mbp 26,351 JGI 2013[88]
Eutrema parvulum Brassicaceae Comparative analysis of crucifer genomes 2013[78]
Leavenworthia alabamica Brassicaceae Comparative analysis of crucifer genomes 2013[78]
Sisymbrium irio Brassicaceae Comparative analysis of crucifer genomes 2013[78]
Thellungiella parvula Brassicaceae A relative of arabidopsis with high salt tolerance 2011[89]
Cannabis sativa (hemp) Cannabaceae Hemp and marijuana production ca 820 Mbp 30,074 based on transcriptome assembly and clustering 2011[90] Illumina/454

scaffold N50 16.2 Kbp

Carica papaya (papaya) Caricaceae Fruit crop 372 Mbp 28,629 2008[91] contig N50 11kbp

scaffold N50

1Mbp

total coverage ~3x (Sanger)

92.1% unigenes mapped

235Mbp anchored (of this 161Mbp also oriented)

Casuarina equisetifolia

(Australian Pine)

Casuarinaceae bonsai subject 300 Mbp 29,827 2018[92]
Kalanchoë fedtschenkoi Raym.-Hamet & H. PerrierKalanchoe Crassulaceae Molecular genetic model for obligate CAM species in the eudicots 256 Mbp 30,964 34 2017[93] ~70× paired-end reads and ~37× mate-pair reads generated using an Illumina MiSeq platform.
Rhodiola crenulata (Tibetan medicinal herb) Crassulaceae Uses for medicine and food 344.5 Mb 35,517 2017[94]
Citrullus lanatus (watermelon) Cucurbitaceae Vegetable crop ca 425 Mbp 23,440 BGI 2012[95] Illumina

coverage 108.6x

contig N50 26.38 kbp

Scaffold N50 2.38 Mbp

genome covered 83.2%

~97% ESTs mapped

Cucumis melo (Muskmelon) DHL92 Cucurbitaceae Vegetable crop 450 Mbp 27,427 2012[96] 454

13.5x coverage

contig N50: 18.1kbp

scaffold N50: 4.677 Mbp

WGS

Cucumis sativus (cucumber) 'Chinese long' inbred line 9930 Cucurbitaceae Vegetable crop 350 Mbp (Kmer depth) 367 Mbp (flow cytometry) 26,682 2009[97] contig N50 19.8kbp

scaffold N50 1,140kbp

total coverage ~72.2 (Sanger + Ilumina)

96.8% unigenes mapped

72.8% of the genome anchored

Cucurbita argyrosperma

(Silver-seed goud)

Cucurbitaceae Vegetable crop 228.8 Mbp 28,298 20 National Autonomous University of Mexico 2019[98] contig N50 463 kbp

scaffold N50 620 kbp

total coverage ~151x (PacBio + Illumina)

Siraitia grosvenorii

(Monk fruit)

Cucurbitaceae Chinese medicine/sweetener 456.5 Mbp 30,565 Anhui Agricultural University 2018[99]
Hevea brasiliensis (rubber tree) Euphorbiaceae the most economically important member of the genus Hevea 2013[100]
Jatropha curcas Palawan Euphorbiaceae bio-diesel crop 2011[101]
Manihot esculenta (Cassava) Euphorbiaceae Humanitarian importance ~760 Mb 30,666 JGI 2012[102]
Ricinus communis (Castor bean) Euphorbiaceae Oilseed crop 320 Mbp 31,237 JCVI 2010[103] Sanger coverage~4.6x contig N50 21.1 kbp scaffold N50 496.5kbp
Ammopiptanthus nanus Fabaceae Only genus of evergreen broadleaf shrub 889 Mb 37,188 2018[104]
Cajanus cajan (Pigeon pea) var. Asha Fabaceae Model legume 2012[105][106]
Arachis duranensis (A genome diploid wild peanut) accession V14167 Fabaceae Wild ancestor of peanut, an oilseed and grain legume crop 2016[107] Illumina 154x coverage, contig N50 22 kbp, scaffold N50 948 kbp
Arachis ipaensis (B genome diploid wild peanut) accession K30076 Fabaceae Wild ancestor of peanut, an oilseed and grain legume crop 2016[107] Illumina 163x coverage, contig N50 23 kbp, scaffold N50 5,343 kbp
Cicer arietinum (chickpea) Fabaceae filling 2013[108]
Cicer arietinum L. (chickpea) Fabaceae 2013[109]
Faidherbia albida

(Apple-Ring Acacia)

Fabaceae Importante in the Sahel for raising bees 28,979 2018[110][74]
Glycine max (soybean) var. Williams 82 Fabaceae Protein and oil crop 1115 Mbp 46,430 2010[111] Contig N50:189.4kbp

Scaffold N50:47.8Mbp

Sanger coverage ~8x

WGS

955.1 Mbp assembled

Lablab purpureus

(Hyacinth Bean)

Fabaceae Crop for human consumption 20,946 2018[74][112]
Lotus japonicus (Bird's-foot Trefoil) Fabaceae Model legume 2008[113]
Medicago truncatula (Barrel Medic) Fabaceae Model legume 2011[114]
Phaseolus vulgaris (common bean) Fabaceae Model bean 520 Mbp 31,638 JGI 2013?[115]
Vigna subterranea

(Bambara Groundnut)

Fabaceae similar to peanuts 31,707 2018[116][74]
Castanea mollissima (Chinese chestnut) Fagaceae cultivated nut 785.53 Mb 36,479 Beijing University of Agriculture 2019[117] Illumina: ∼42.7×

PacBio: ∼87×

contig N50: 944,000bp

Carya illinoinensis

Pecan

Junglandaceae snacks in various recipes 651.31 Mb 2019[118]
Juglans regia (Persian walnut) Junglandaceae cultivated nut 540 Mb Chinese Academy of Forestry 2020[119]
Juglans sigillata (Iron walnut) Junglandaceae cultivated nut 536.50 Mb Nanjing Forestry University 2020[120] Illumina+Nanopore+bionano

scaffold N50: 16.43 Mb, contig N50: 4.34 Mb

Linum usitatissimum (flax) Linaceae Crop ~350 Mbp 43,384 BGI et al. 2012[121]
Bombax ceiba

(red silk cotton tree)

Malvaceae capsules with white fibre like cotton 895 Mb 2018[122]
Durio zibethinus (Durian) Malvaceae Tropical fruit tree ~738 Mbp 2017[123]
Gossypium raimondii Malvaceae One of the putative progenitor species of tetraploid cotton 2013?[124]
Theobroma cacao (cocoa tree) Malvaceae Flavouring crop 2010[125][126]
Theobroma cacao (cocoa tree) cv. Matina 1-6 Malvaceae Most widely cultivated cacao type 2013[127]
Theobroma cacao (200 accessions) Malvaceae domestication history of cacao 2018[128]
Azadirachta indica (neem) Meliaceae Source of number of Terpenoids, including biopesticide azadirachtin, Used in Traditional Medicine 364 Mbp ~20000 GANIT Labs 2012[129] and 2011[130] Illumina GAIIx, scaffold N50 of 452028bp, Transcriptome data from Shoot, Root, Leaf, Flower and Seed
Moringa oleifera

(Horseradish Tree)

Moringaceae traditional herbal medicine 18,451 2018[131][74]
Eucalyptus grandis (Rose gum) Myrtaceae Fibre and timber crop 691.43 Mb 2011[132]
Eucalyptus pauciflora (Snow gum) Myrtaceae Fibre and timber crop 594.87 Mb ANU 2020[133] Nanopore + Illumina; contig N50: 3.23 Mb
C. cathayensis

(Chinese hickory)

Rosaceae fruit crop 706.43 Mb 2019[118]
Eriobotrya japonica (Loquat) Rosaceae Fruit tree 760.1 Mb 45,743 Shanghai Academy of Agricultural Sciences 2020[134] Illumina+Nanopore+Hi-C

17 chromosomes, scaffold N50: 39.7 Mb

Fragaria vesca (wild strawberry) Rosaceae Fruit crop 240 Mbp 34,809 2011[135] scaffold N50: 1.3 Mbp

454/Illumina/solid

39x coverage

WGS

Malus domestica (apple) "Golden Delicious" Rosaceae Fruit crop ~742.3 Mbp 57,386 2010[136] contig N50 13.4 (kbp??)

scaffold N50 1,542.7 (kbp??)

total coverage ~16.9x (Sanger + 454)

71.2% anchored

Prunus amygdalus (almond) Rosaceae Fruit crop 2013?[137]
Prunus avium (sweet cherry) cv. Stella Rosaceae Fruit crop 2013?[137]
Prunus mume (Chinese plum or Japanese apricot) Rosaceae Fruit crop 2012[138]
Prunus persica (peach) Rosaceae Fruit crop 265 Mbp 27,852 2013[139] Sanger coverage:8.47x

WGS

ca 99% ESTs mapped

215.9 Mbp in pseudomolecules

Pyrus bretschneideri (ya pear or Chinese white pear) cv. Dangshansuli Rosaceae Fruit crop 2012[140]
Pyrus communis (European pear) cv. Doyenne du Comice Rosaceae Fruit crop 2013?[137]
Rubus occidentalis

(Black raspberry)

Rosaceae Fruit crop 290 Mbp 2018[141]
Citrus clementina (Clementine) Rutaceae Fruit crop 2013?[142]
Citrus sinensis (Sweet orange) Rutaceae Fruit crop 2013?,[142] 2013[143]
Populus trichocarpa (poplar) Salicaceae Carbon sequestration, model tree, timber 510 Mbp (cytogenetic) 485 Mbp (coverage) 73,013 [Phytozome] 2006[144] Scaffold N50: 19.5 Mbp

Contig N50:552.8 Kbp [phytozome]

WGS

>=95 % cDNA found

Populus pruinosa

(desert tree)

Salicaceae farming and rancing 479.3 Mbp 35,131 2017[145]
Acer yangbiense Sapindaceae Fruit crop 110 Gb 28,320 2019[146]
Dimocarpus longan (Longan) Sapindaceae Fruit crop 471.88 Mb 2017[147]
Xanthoceras sorbifolium Bunge (Yellowhorn) Sapindaceae Fruit Crop 504.2 Mb 24,672 2019[148][149]
Aquilaria sinensis (Agarwood) Thymelaeaceae Fragrant wood 726.5 Mb 29,203 2020[150] Illumina+nanopore+Hi-C, scaffold N50: 88.78 Mb
Vitis vinifera (grape) genotype PN40024 Vitaceae fruit crop 2007[151]
Asterids
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Asclepias syriaca, (common milkweed) Apocynaceae Exudes milky latex 420 Mbp 14,474 Oregon State University 2019[152] 80.4× depth

N50 = 3,415 bp

Erigeron breviscapus (Chinese herbal fleabane) Asteraceae Chinese medicine 37,505 2017[153]
Helianthus annuus (sunflower) Asteraceae Oil crop 3.6 Gbb 52,232 INRA and The Sunflower Genome Database[154] 2017[155] N50 contig: 13.7 kb
Lactuca sativa (lettuce) Asteraceae Vegetable crop 2.5 Gbb 38,919 2017[156] N50 contig: 12 kb; N50 scaffold: 476 kb
Handroanthus impetiginosus, Bignoniaceae

(Pink Ipê)

Bignoniaceae Common tree 503.7 Mb 31,668 2017[157]
Diospyros oleifera Cheng (Persimmon or Kaki) Ebenaceae Fruit tree 849.53 Mb 28,580 Zhejiang University & Chinese Academy of Forestry 2019[158] & 2020[159] Two genomes both chromosome scale & assigned to 15 pseudochromosomes
Salvia miltiorrhiza Bunge

(Chinese red sage)

Lamiaceae TCM treatment for COPD 641 Mb 34,598 2015[160]
Mentha x piperita (Peppermint) Lamiaceae Oil crop 353 Mb 35,597 Oregon State University 2017[161]
Tectona grandis

(Teak)

Lamiaceae Durability and water resistance 31,168 2019[162]
Utricularia gibba (humped bladderwort) Lentibulariaceae model system for studying genome size evolution; a carnivorous plant 81.87 Mb 28,494 LANGEBIO, CINVESTAV 2013[163] Scaffold N50: 80.839 Kb
Camptotheca acuminata Decne

(Chinese happy tree)

Nyssaceae chemical drugs for cancer treatment 403 Mb 31,825 2017[164]
Davidia involucrata Baill (Dove tree) Nyssaceae Living fossil 1,169 Mb 42,554 2020[165]
Mimulus guttatus Phrymaceae model system for studying ecological and evolutionary genetics ca 430 Mbp 26,718 JGI 2013?[166] Scaffold N50 = 1.1 Mbp

Contig N50 = 45.5 Kbp

Primula vulgaris (Common primrose) Primulaceae Used for cooking 474 Mb 2018[167]
Solanum lycopersicum (tomato) cv. Heinz 1706 Solanaceae Food crop ca 900 Mbp 34,727 SGN 2011[168] 2012[169] Sanger/454/Illumina/Solid

Pseudomolecules spanning 91 scaffolds (760Mbp of which 594Mbp have been oriented )

over 98% ESTs mappable

Solanum aethiopicum (Ethiopian eggplant) Solanaceae Food crop 1.02 Gbp 34,906 BGI 2019[170] Illumina

scaffold N50: 516,100bp

contig N50: 25,200 bp

∼109× coverage

Solanum pimpinellifolium (Currant Tomato) Solanaceae closest wild relative to tomato 2012[169] Illumina

contig N50: 5100bp

~40x coverage

Solanum tuberosum (Potato) Solanaceae Food crop 726 Mbp[171] 39,031 Potato Genome Sequencing Consortium (PGSC) 2011[172][173] Sanger/454/Illumina

79.2x coverage

contig N50: 31,429bp

scaffold N50: 1,318,511bp

Solanum commersonii (commerson's nightshade) Solanaceae Wild potato relative 838 Mbp kmer (840 Mbp) 37,662 UNINA, UMN, UNIVR, Sequentia Biotech, CGR 2015[174] Illumina

105x coverage

contig N50: 6,506bp

scaffold N50: 44,298bp

Cuscuta campestris

(field dodder)

Solanaceae model system for parasitic plants 556 Mbp kmer (581 Mbp) 44,303 RWTH Aachen University, Research Center Jülich, UiT The Arctic University of Norway, Helmholtz Zentrum München, Technical University Munich, University of Vienna 2018[175] scaffold N50 = 1.38 Mbp
Cuscuta australis (Southern dodder) Solanaceae model system for parasitic plants 265 Mbp

kmer (273 Mbp)

19,671 Kunming Institute of Botany, Chinese Academy of Sciences 2018[176] scaffold N50 = 5.95 Mbp

contig N50 = 3.63 Mbp

Nicotiana benthamiana Solanaceae Close relative of tobacco ca 3 Gbp 2012[177] Illumina

63x coverage

contig N50: 16,480bp

scaffold N50:89,778bp

>93% unigenes found

Nicotiana sylvestris (Tobacco plant) Solanaceae model system for studies of terpenoid production 2.636 Gbp Philip Morris International 2013[178] 94x coverage

scaffold N50: 79.7 kbp

194kbp superscaffolds using physical Nicotiana map

Nicotiana tomentosiformis Solanaceae Tobacco progenitor 2.682 Gb Philip Morris International 2013[178] 146x coverage

scaffold N50: 82.6 kb

166kbp superscaffolds using physical Nicotiana map

Capsicum annuum (Pepper)

(a) cv. CM334 (b) cv. Zunla-1

Solanaceae Food crop ~3.48 Gbp (a) 34,903

(b) 35,336

(a) 2014[179]

(b) 2014[180]

N50 contig: (a) 30.0 kb (b) 55.4 kb

N50 scaffold: (a) 2.47 Mb (b) 1.23 Mb

Capsicum annuum var. glabriusculum (Chiltepin) Solanaceae Progenitor of cultivated pepper ~3.48 Gbp 34,476 2014[180] N50 contig: 52.2 kb

N50 scaffold: 0.45 Mb

Petunia hybrida Solanaceae Economically important flower 2011[181]

Monocots

Grasses
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Setaria italica (Foxtail millet) Poaceae Model of C4 metabolism 2012[182]
Aegilops tauschii (Tausch's goatgrass) Poaceae bread wheat D-genome progenitor ca 4.36 Gb 39,622 2017[183] pseudomolecule assembly
Brachypodium distachyon (purple false brome) Poaceae Model monocot 2010[184]
Coix lacryma-jobi L. (Job's tears) Poaceae Crop & used in medicine & ornamentation 1.619 Gb 39,629 2019[185]
Dichanthelium oligosanthes (Heller's rosette grass) Poaceae C3 grass closely related to C4 species 960 Mb DDPSC 2016[186]
Eragrostis curvula Poaceae good for livestock 43.31 Mb 56,469 2019[187]
Hordeum vulgare (barley) Poaceae Model of ecological adoption IBSC 2012,[188] 2017[189]
Oryza brachyantha (wild rice) Poaceae Disease resistant wild relative of rice 2013[190]
Oryza glaberrima (African rice) var CG14 Poaceae West-African species of rice 2010[191]
Oryza rufipogon (red rice) Poaceae Ancestor to Oryza sativa 406 Mb 37,071 SIBS 2012[192] Illumina HiSeq2000

100x coverage

Oryza sativa (long grain rice) ssp indica Poaceae Crop and model cereal 430 Mb[193] International Rice Genome Sequencing Project (IRGSP) 2002[194]
Oryza sativa (Short grain rice) ssp japonica Poaceae Crop and model cereal 430 Mb International Rice Genome Sequencing Project (IRGSP) 2002[195]
Panicum virgatum (switchgrass) Poaceae biofuel 2013?[196]
Phyllostachys edulis (moso bamboo) Poaceae Bamboo textile industry 79.90 Mb 25,225 2013[197] 2018[198]
Sorghum bicolor genotype BTx623 Poaceae Crop ca 730 Mb 34,496 2009[199] contig N50:195.4kbp

scaffold N50: 62.4Mbp

Sanger, 8.5x coverage

WGS

Triticum aestivum (bread wheat) Poaceae 20% of global nutrition 14.5 Gb 107,891 IWGSC 2018[200] pseudomolecule assembly
Triticum urartu Poaceae Bread wheat A-genome progenitor ca 4.94 Gb BGI 2013[201] Non-repetitive sequence assembled

Illumina WGS

Zea mays (maize) ssp mays B73 Poaceae Cereal crop 2.3 Gb 39,656[202] 2009[203] contig N50 40kbp

scaffold N50: 76kbp

Sanger, 4-6x coverage per BAC

Pennisetum glaucum (pearl millet) Poaceae Subsaharian and Sahelian millet species ~1,79 Gb 38,579 2017[204] WGS and bacterial artificial chromosome (BAC) sequencing
Other non-grasses
Organism strain Family Relevance Genome size Number of genes predicted No of chromosomes Organization Year of completion Assembly status
Ananas bracteatus accession CB5 Bromeliaceae Wild pineapple relative 382 Mbp 27,024 25 2015[205] 100× coverage using Illumina paired-end reads of libraries with different insert sizes.
Ananas comosus (L.) Merr. (Pineapple), varieties F153 and MD2 Bromeliaceae The most economically valuable crop possessing crassulacean acid metabolism (CAM) 382 Mb 27,024 25 2015[205] 400× Illumina reads, 2× Moleculo synthetic long reads, 1× 454 reads, 5× PacBio single-molecule long reads and 9,400 BACs.
Musa acuminata (Banana) Musaceae A-genome of modern banana cultivars 523 Mbp 36,542 2012[206] N50 contig: 43.1 kb

N50 scaffold: 1.3 Mb

Musa balbisiana (Wild banana) Musaceae B-genome of modern banana cultivars 438 Mbp 36,638 2013[207] N50 contig: 7.9 kb
Calamus simplicifolius
Arecaceae native to tropical and subtropical regions 1.98 Gb 51,235 2018[208]
Cocos nucifera (Coconut palm) Arecaceae used in food and cosmetics 419.67 Gb 2017[209]
Daemonorops jenkinsiana Arecaceae native to tropical and subtropical regions. 1.61 Gb 52,342 2018[208]
Phoenix dactylifera (Date palm) Arecaceae Woody crop in arid regions 658 Mbp 28,800 2011[210] N50 contig: 6.4 kb
Elaeis guineensis (African oil palm) Arecaceae Oil-bearing crop ~1800 Mbp 34,800 2013[211] N50 scaffold: 1.27 Mb
Spirodela polyrhiza (Greater duckweed) Araceae Aquatic plant 158 Mbp 19,623 2014[212] N50 scaffold: 3.76 Mb
Phalaenopsis equestris (Schauer) Rchb.f. (Moth orchid) Orchidaceae Breeding parent of many modern moth orchid cultivars and hybrids.

Plant with crassulacean acid metabolism (CAM).

1600 Mbp 29,431 2014[213] N50 scaffold: 359,115 kb

Press releases announcing sequencing

Not meeting criteria of the first paragraph of this article in being nearly full sequences with high quality, published, assembled and publicly available. This list includes species where sequences are announced in press releases or websites, but not in a data-rich publication in a refereed peer-review journal with DOI.

  • Corchorus olitorius (Jute mallow), fibre plant 2017[214][215]
  • Corchorus capsularis 2017[214]
  • Fraxinus excelsior, European ash (2013 draft[216][217])

See also

External links

References

  1. "Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics". Proceedings of the National Academy of Sciences of the United States of America 108 (11): 4352–7. March 2011. doi:10.1073/pnas.1016106108. PMID 21368207. Bibcode2011PNAS..108.4352G. 
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 "Production Strain(s)". Greenhouse Organisms. https://greenhouse.lanl.gov/greenhouse/organisms/. 
  3. "Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes". BMC Genomics 15 (1): 582. July 2014. doi:10.1186/1471-2164-15-582. PMID 25012212. 
  4. "Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage". Genome Biology 13 (8): R74. August 2012. doi:10.1186/gb-2012-13-8-r74. PMID 22925495. 
  5. 5.0 5.1 "Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs". Nature 492 (7427): 59–65. December 2012. doi:10.1038/nature11681. PMID 23201678. Bibcode2012Natur.492...59C. 
  6. "The Chlamydomonas genome reveals the evolution of key animal and plant functions". Science 318 (5848): 245–50. October 2007. doi:10.1126/science.1143609. PMID 17932292. Bibcode2007Sci...318..245M. 
  7. "CSI_1228 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_002939045.1. 
  8. "ASM313072v1 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_003130725.1. 
  9. "ASM311615v1 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_003116155.1. 
  10. "The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex". The Plant Cell 22 (9): 2943–55. September 2010. doi:10.1105/tpc.110.076406. PMID 20852019. 
  11. "Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division". Proceedings of the National Academy of Sciences of the United States of America 94 (11): 5967–72. May 1997. doi:10.1073/pnas.94.11.5967. PMID 9159184. Bibcode1997PNAS...94.5967W. 
  12. "Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida". Proceedings of the National Academy of Sciences of the United States of America 110 (13): 5247–52. March 2013. doi:10.1073/pnas.1221259110. PMID 23503846. Bibcode2013PNAS..110.5247C. 
  13. "ASM288719v1 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_002887195.1. 
  14. "Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae)". PLOS Genetics 11 (9): e1005469. 2015. doi:10.1371/journal.pgen.1005469. PMID 26397803. 
  15. "Coccomyxa". JGI entry. http://genome.jgi-psf.org/Coc_C169_1/Coc_C169_1.home.html. 
  16. "Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D". Nature 428 (6983): 653–7. April 2004. doi:10.1038/nature02398. PMID 15071595. Bibcode2004Natur.428..653M. 
  17. "A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae". BMC Biology 5: 28. July 2007. doi:10.1186/1741-7007-5-28. PMID 17623057. 
  18. 18.0 18.1 "Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants". Science 335 (6070): 843–7. February 2012. doi:10.1126/science.1213561. PMID 22344442. Bibcode2012Sci...335..843P. 
  19. "Dunaliella salina Strain CCAP19/18". Genome Announcements 5 (43): e01105–17. October 2017. doi:10.1128/genomea.01105-17. PMID 29074648. 
  20. "The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA". BMC Plant Biology 10: 83. May 2010. doi:10.1186/1471-2229-10-83. PMID 20459666. 
  21. "The Ectocarpus genome and the independent evolution of multicellularity in brown algae". Nature 465 (7298): 617–21. June 2010. doi:10.1038/nature09016. PMID 20520714. Bibcode2010Natur.465..617C. 
  22. "Pan genome of the phytoplankton Emiliania underpins its global distribution". Nature 499 (7457): 209–13. July 2013. doi:10.1038/nature12221. PMID 23760476. Bibcode2013Natur.499..209.. 
  23. 23.0 23.1 "Anisogamy evolved with a reduced sex-determining region in volvocine green algae". Communications Biology 1 (1): 17. 2018-03-08. doi:10.1038/s42003-018-0019-5. PMID 30271904. 
  24. "Galdieria sulphuraria Genome Project". MSU. http://genomics.msu.edu/galdieria/. 
  25. "Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae". Plant Physiology 137 (2): 460–74. February 2005. doi:10.1104/pp.104.051169. PMID 15710685. 
  26. "Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote". Science 339 (6124): 1207–10. March 2013. doi:10.1126/science.1231707. PMID 23471408. Bibcode2013Sci...339.1207S. https://pub.uni-bielefeld.de/record/2915146. 
  27. "Micromonas p.C3". JGI MycoCosm. http://genome.jgi-psf.org/MicpuC3/MicpuC3.home.html. 
  28. 28.0 28.1 "Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas". Science 324 (5924): 268–72. April 2009. doi:10.1126/science.1167222. PMID 19359590. Bibcode2009Sci...324..268W. http://www.escholarship.org/uc/item/7c83j3jr. 
  29. "Micromonas p.N3". JGI MycoCosm. http://genome.jgi-psf.org/MicpuN3/MicpuN3.home.html. 
  30. "Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production". BMC Genomics 14: 926. December 2013. doi:10.1186/1471-2164-14-926. PMID 24373495. 
  31. "ASM24072v1 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCF_000240725.1. 
  32. "ASM187094v1 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_001870945.1. 
  33. "ASM161424v1 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_001614245.1#/st. 
  34. "The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation". Proceedings of the National Academy of Sciences of the United States of America 104 (18): 7705–10. May 2007. doi:10.1073/pnas.0611046104. PMID 17460045. Bibcode2007PNAS..104.7705P. 
  35. "Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features". Proceedings of the National Academy of Sciences of the United States of America 103 (31): 11647–52. August 2006. doi:10.1073/pnas.0604795103. PMID 16868079. Bibcode2006PNAS..10311647D. 
  36. "Ostreococcus RCC809". JGI MycoCosm. University of California. https://genome.jgi.doe.gov/OstRCC809_2/OstRCC809_2.home.html. 
  37. "The Phaeodactylum genome reveals the evolutionary history of diatom genomes". Nature 456 (7219): 239–44. November 2008. doi:10.1038/nature07410. PMID 18923393. Bibcode2008Natur.456..239B. 
  38. "Nuclear, Chloroplast, and Mitochondrial Genome Sequences of the Prospective Microalgal Biofuel Strain Picochlorum soloecismus". Genome Announcements 6 (4). January 2018. doi:10.1128/genomeA.01498-17. PMID 29371352. 
  39. "Genome of the halotolerant green alga Picochlorum sp. reveals strategies for thriving under fluctuating environmental conditions". Environmental Microbiology 17 (2): 412–26. February 2015. doi:10.1111/1462-2920.12541. PMID 24965277. 
  40. "Genome of the red alga Porphyridium purpureum". Nature Communications 4: 1941. 2013. doi:10.1038/ncomms2931. PMID 23770768. Bibcode2013NatCo...4.1941B. 
  41. "The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis)". PLOS ONE 8 (3): e57122. 2013. doi:10.1371/journal.pone.0057122. PMID 23536760. Bibcode2013PLoSO...857122N. 
  42. "SJ6.1 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_000978595.1/. 
  43. "Scenedesmus obliquus Strain DOE0152z". Genome Announcements 5 (32). August 2017. doi:10.1128/genomeA.00617-17. PMID 28798164. 
  44. "ThaOc_1.0 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCA_000296195.2/. 
  45. "ASM14940v2 - Genome - Assembly - NCBI". https://www.ncbi.nlm.nih.gov/assembly/GCF_000149405.2/. 
  46. "Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri". Science 329 (5988): 223–6. July 2010. doi:10.1126/science.1188800. PMID 20616280. Bibcode2010Sci...329..223P. 
  47. "The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants". Science 319 (5859): 64–9. January 2008. doi:10.1126/science.1150646. PMID 18079367. Bibcode2008Sci...319...64R. 
  48. "Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome". Cell 171 (2): 287–304.e15. October 2017. doi:10.1016/j.cell.2017.09.030. PMID 28985561. 
  49. "The Selaginella genome identifies genetic changes associated with the evolution of vascular plants". Science 332 (6032): 960–3. May 2011. doi:10.1126/science.1203810. PMID 21551031. Bibcode2011Sci...332..960B. 
  50. "Phytozome". JGI MycoCosm. http://genome.jgi-psf.org/Selmo1/Selmo1.home.html. 
  51. 51.0 51.1 "Fern genomes elucidate land plant evolution and cyanobacterial symbioses". Nature Plants 4 (7): 460–472. July 2018. doi:10.1038/s41477-018-0188-8. PMID 29967517. 
  52. 52.0 52.1 52.2 52.3 "Sequence of the Sugar Pine Megagenome". Genetics 204 (4): 1613–1626. December 2016. doi:10.1534/genetics.116.193227. PMID 27794028. 
  53. "The Norway spruce genome sequence and conifer genome evolution". Nature 497 (7451): 579–84. May 2013. doi:10.1038/nature12211. PMID 23698360. Bibcode2013Natur.497..579N. 
  54. "Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data". Bioinformatics 29 (12): 1492–7. June 2013. doi:10.1093/bioinformatics/btt178. PMID 23698863. 
  55. "Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism". The Plant Journal 83 (2): 189–212. July 2015. doi:10.1111/tpj.12886. PMID 26017574. 
  56. "Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies". Genome Biology 15 (3): R59. March 2014. doi:10.1186/gb-2014-15-3-r59. PMID 24647006. 
  57. "Sequencing and assembly of the 22-gb loblolly pine genome". Genetics 196 (3): 875–90. March 2014. doi:10.1534/genetics.113.159715. PMID 24653210. 
  58. "Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation". Genetics 196 (3): 891–909. March 2014. doi:10.1534/genetics.113.159996. PMID 24653211. 
  59. "Draft genome of the living fossil Ginkgo biloba". GigaScience 5 (1): 49. November 2016. doi:10.1186/s13742-016-0154-1. PMID 27871309. 
  60. Neale, David B.; McGuire, Patrick E.; Wheeler, Nicholas C.; Stevens, Kristian A.; Crepeau, Marc W.; Cardeno, Charis; Zimin, Aleksey V.; Puiu, Daniela et al. (2017-09-01). "The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae" (in en). G3: Genes, Genomes, Genetics 7 (9): 3157–3167. doi:10.1534/g3.117.300078. ISSN 2160-1836. PMID 28751502. https://www.g3journal.org/content/7/9/3157. 
  61. "A genome for gnetophytes and early evolution of seed plants". Nature Plants 4 (2): 82–89. February 2018. doi:10.1038/s41477-017-0097-2. PMID 29379155. 
  62. Amborella Genome Project (December 2013). "The Amborella genome and the evolution of flowering plants". Science 342 (6165): 1241089. doi:10.1126/science.1241089. PMID 24357323. 
  63. "Amborella Genome Database". Penn State University. http://www.amborella.org/. 
  64. "Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)". Genome Biology 14 (5): R41. May 2013. doi:10.1186/gb-2013-14-5-r41. PMID 23663246. 
  65. "Aquilegia caerulea". Phytozome v9.1. http://www.phytozome.net/aquilegia.php. 
  66. "Trochodendron aralioides, the first chromosome-level draft genome in Trochodendrales and a valuable resource for basal eudicot research". GigaScience 8 (11). November 2019. doi:10.1093/gigascience/giz136. PMID 31738437. 
  67. "The genome of the recently domesticated crop plant sugar beet (Beta vulgaris)". Nature 505 (7484): 546–9. January 2014. doi:10.1038/nature12817. PMID 24352233. Bibcode2014Natur.505..546D. 
  68. 68.0 68.1 "The genome of Chenopodium quinoa". Nature 542 (7641): 307–312. February 2017. doi:10.1038/nature21370. PMID 28178233. Bibcode2017Natur.542..307J. 
  69. "The Amaranth Genome: Genome, Transcriptome, and Physical Map Assembly". The Plant Genome 9 (1): 0. March 2016. doi:10.3835/plantgenome2015.07.0062. PMID 27898770. 
  70. "Phytozome". https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Ahypochondriacus_er. 
  71. 71.0 71.1 "Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti". Proc Natl Acad Sci U S A 114 (45): 12003–12008. November 2017. doi:10.1073/pnas.1706367114. PMID 29078296. 
  72. "A draft genome assembly of halophyte Suaeda aralocaspica, a plant that performs C4 photosynthesis within individual cells". GigaScience 8 (9). September 2019. doi:10.1093/gigascience/giz116. PMID 31513708. 
  73. "Simmondsia chinensis): A taxonomically isolated species that directs wax ester accumulation in its seeds". Science Advances 6 (11): eaay3240. March 2020. doi:10.1126/sciadv.aay3240. PMID 32195345. 
  74. 74.0 74.1 74.2 74.3 74.4 "The draft genomes of five agriculturally important African orphan crops". GigaScience 8 (3). March 2019. doi:10.1093/gigascience/giy152. PMID 30535374. 
  75. "Genomic data of Marula (Sclerocarya birrea)". GigaDB Dataset. GigaScience Database. 2018. doi:10.5524/101057. 
  76. 76.0 76.1 "Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch". Nature Genetics 49 (6): 904–912. May 2017. doi:10.1038/ng.3862. PMID 28481341. 
  77. "Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers". Molecular Ecology 22 (11): 3098–111. June 2013. doi:10.1111/mec.12131. PMID 23167599. 
  78. 78.0 78.1 78.2 78.3 "An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions". Nature Genetics 45 (8): 891–8. August 2013. doi:10.1038/ng.2684. PMID 23817568. 
  79. 79.0 79.1 "The Arabidopsis lyrata genome sequence and the basis of rapid genome size change". Nature Genetics 43 (5): 476–81. May 2011. doi:10.1038/ng.807. PMID 21478890. 
  80. "Updated Col-0 Genome Annotation (Araport11 Official Release) Updated Jun 2016 | Araport". https://www.araport.org/data/araport11. 
  81. The Arabidopsis Genome Initiative (December 2000). "Analysis of the genome sequence of the flowering plant Arabidopsis thaliana". Nature 408 (6814): 796–815. doi:10.1038/35048692. PMID 11130711. Bibcode2000Natur.408..796T. 
  82. "The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry". Scientific Reports 7: 40728. January 2017. doi:10.1038/srep40728. PMID 28094805. Bibcode2017NatSR...740728B. 
  83. "The genome of the mesopolyploid crop species Brassica rapa". Nature Genetics 43 (10): 1035–9. August 2011. doi:10.1038/ng.919. PMID 21873998. https://nrc-publications.canada.ca/eng/view/accepted/?id=8fdc0510-af47-4bba-bdf8-7c81bd2b18ec. 
  84. "Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome". Science 345 (6199): 950–3. August 2014. doi:10.1126/science.1253435. PMID 25146293. Bibcode2014Sci...345..950C. 
  85. "Capsella rubella". Phytozome v9.1. http://www.phytozome.net/capsella.php. 
  86. "The Capsella rubella genome and the genomic consequences of rapid mating system evolution". Nature Genetics 45 (7): 831–5. July 2013. doi:10.1038/ng.2669. PMID 23749190. 
  87. "The Cardamine hirsuta genome offers insight into the evolution of morphological diversity". Nature Plants 2 (11): 16167. October 2016. doi:10.1038/nplants.2016.167. PMID 27797353. 
  88. "The Reference Genome of the Halophytic Plant Eutrema salsugineum". Frontiers in Plant Science 4: 46. 2013. doi:10.3389/fpls.2013.00046. PMID 23518688. 
  89. "The genome of the extremophile crucifer Thellungiella parvula". Nature Genetics 43 (9): 913–8. August 2011. doi:10.1038/ng.889. PMID 21822265. 
  90. "The draft genome and transcriptome of Cannabis sativa". Genome Biology 12 (10): R102. October 2011. doi:10.1186/gb-2011-12-10-r102. PMID 22014239. 
  91. "The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)". Nature 452 (7190): 991–6. April 2008. doi:10.1038/nature06856. PMID 18432245. Bibcode2008Natur.452..991M. 
  92. "De novo genome assembly of the stress tolerant forest species Casuarina equisetifolia provides insight into secondary growth". The Plant Journal 97 (4): 779–794. February 2019. doi:10.1111/tpj.14159. PMID 30427081. 
  93. "The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism". Nature Communications 8 (1): 1899. December 2017. doi:10.1038/s41467-017-01491-7. PMID 29196618. Bibcode2017NatCo...8.1899Y. 
  94. "Draft genome sequence of the Tibetan medicinal herb Rhodiola crenulata". GigaScience 6 (6): 1–5. June 2017. doi:10.1093/gigascience/gix033. PMID 28475810. 
  95. "The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions". Nature Genetics 45 (1): 51–8. January 2013. doi:10.1038/ng.2470. PMID 23179023. 
  96. "The genome of melon (Cucumis melo L.)". Proceedings of the National Academy of Sciences of the United States of America 109 (29): 11872–7. July 2012. doi:10.1073/pnas.1205415109. PMID 22753475. Bibcode2012PNAS..10911872G. 
  97. "The genome of the cucumber, Cucumis sativus L". Nature Genetics 41 (12): 1275–81. December 2009. doi:10.1038/ng.475. PMID 19881527. 
  98. Barrera-Redondo, Josué; Ibarra-Laclette, Enrique; Vázquez-Lobo, Alejandra; Gutiérrez-Guerrero, Yocelyn T.; Vega, Guillermo Sánchez de la; Piñero, Daniel; Montes-Hernández, Salvador; Lira-Saade, Rafael et al. (2019-04-01). "The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita" (in English). Molecular Plant 12 (4): 506–520. doi:10.1016/j.molp.2018.12.023. ISSN 1674-2052. PMID 30630074. https://www.cell.com/molecular-plant/abstract/S1674-2052(19)30003-6. 
  99. "Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo". GigaScience 7 (6). June 2018. doi:10.1093/gigascience/giy067. PMID 29893829. 
  100. "Draft genome sequence of the rubber tree Hevea brasiliensis". BMC Genomics 14: 75. February 2013. doi:10.1186/1471-2164-14-75. PMID 23375136. 
  101. "Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L". DNA Research 18 (1): 65–76. February 2011. doi:10.1093/dnares/dsq030. PMID 21149391. 
  102. Prochnik et al. (2012), J. Tropical Plant Biology
  103. "Draft genome sequence of the oilseed species Ricinus communis". Nature Biotechnology 28 (9): 951–6. September 2010. doi:10.1038/nbt.1674. PMID 20729833. 
  104. "Long-read sequencing and de novo genome assembly of Ammopiptanthus nanus, a desert shrub". GigaScience 7 (7). July 2018. doi:10.1093/gigascience/giy074. PMID 29917074. 
  105. "The first draft of the pigeonpea genome sequence". Journal of Plant Biochemistry and Biotechnology 21 (1): 98–112. 2012. doi:10.1007/s13562-011-0088-8. PMID 24431589. 
  106. "Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers". Nature Biotechnology 30 (1): 83–9. November 2011. doi:10.1038/nbt.2022. PMID 22057054. 
  107. 107.0 107.1 "The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut". Nature Genetics 48 (4): 438–46. April 2016. doi:10.1038/ng.3517. PMID 26901068. 
  108. "Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement". Nature Biotechnology 31 (3): 240–6. March 2013. doi:10.1038/nbt.2491. PMID 23354103. http://oar.icrisat.org/6444/1/NB_Draftgenome_2013.pdf. 
  109. "A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.)". The Plant Journal 74 (5): 715–29. June 2013. doi:10.1111/tpj.12173. PMID 23489434. 
  110. "GigaDB Dataset - DOI 10.5524/101054 - Genomic data of the Apple-Ring Acacia (Faidherbia albida)". http://gigadb.org/dataset/101054. 
  111. "Genome sequence of the palaeopolyploid soybean". Nature 463 (7278): 178–83. January 2010. doi:10.1038/nature08670. PMID 20075913. Bibcode2010Natur.463..178S. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1366&context=agronomyfacpub. 
  112. "Genomic data of the Hyacinth Bean (Lablab purpureus)". GigaDB Dataset. GigaScience Database. 2018. doi:10.5524/101056. 
  113. "Genome structure of the legume, Lotus japonicus". DNA Research 15 (4): 227–39. August 2008. doi:10.1093/dnares/dsn008. PMID 18511435. 
  114. "The Medicago genome provides insight into the evolution of rhizobial symbioses". Nature 480 (7378): 520–4. November 2011. doi:10.1038/nature10625. PMID 22089132. Bibcode2011Natur.480..520Y. 
  115. "Phaseolus vulgaris v1.0". Phytozome v9.1. http://www.phytozome.net/commonbean.php. 
  116. "GigaDB Dataset - DOI 10.5524/101055 - Genomic data of the Bambara Groundnut (Vigna subterranea)". http://gigadb.org/dataset/101055. 
  117. "Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima)". GigaScience 8 (9). September 2019. doi:10.1093/gigascience/giz112. PMID 31513707. PMC 6741814. https://academic.oup.com/gigascience/article/8/9/giz112/5568369. 
  118. 118.0 118.1 "The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition". GigaScience 8 (5). May 2019. doi:10.1093/gigascience/giz036. PMID 31049561. 
  119. "A high-quality walnut genome assembly reveals extensive gene expression divergences after whole-genome duplication". Plant Biotechnology Journal n/a (n/a). January 2020. doi:10.1111/pbi.13350. PMID 32004401. 
  120. "Chromosomal-level assembly of Juglans sigillata genome using Nanopore, BioNano, and Hi-C analysis". GigaScience 9 (2). February 2020. doi:10.1093/gigascience/giaa006. PMID 32101299. 
  121. "The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads". The Plant Journal 72 (3): 461–73. November 2012. doi:10.1111/j.1365-313X.2012.05093.x. PMID 22757964. https://zenodo.org/record/897213. 
  122. "De novo genome assembly of the red silk cotton tree (Bombax ceiba)". GigaScience 7 (5). May 2018. doi:10.1093/gigascience/giy051. PMID 29757382. 
  123. "The draft genome of tropical fruit durian (Durio zibethinus)". Nature Genetics 49 (11): 1633–1641. November 2017. doi:10.1038/ng.3972. PMID 28991254. 
  124. "Gossypium raimondii v2.1". Phytozome v9.1. http://www.phytozome.net/cotton.php. 
  125. "The genome of Theobroma cacao". Nature Genetics 43 (2): 101–8. February 2011. doi:10.1038/ng.736. PMID 21186351. 
  126. "Scientific publishing. Genomics researchers upset by rivals' publicity". Science 329 (5999): 1585. September 2010. doi:10.1126/science.329.5999.1585. PMID 20929817. Bibcode2010Sci...329.1585P. 
  127. "The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color". Genome Biology 14 (6): r53. June 2013. doi:10.1186/gb-2013-14-6-r53. PMID 23731509. 
  128. "Theobroma cacao L., provide insights into its domestication process". Communications Biology 1 (1): 167. 2018-10-16. doi:10.1038/s42003-018-0168-6. PMID 30345393. 
  129. "A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica". BMC Genomics 13: 464. September 2012. doi:10.1186/1471-2164-13-464. PMID 22958331. 
  130. "De novo sequencing and assembly ofAzadirachta indica fruit transcriptome". Current Science 101 (12): 1553–61. 25 December 2011. http://www.currentscience.ac.in/Volumes/101/12/1553.pdf. 
  131. "Genomic data of the Horseradish Tree (Moringa oleifera)". GigaDB Dataset. GigaScience Database. 2018. doi:10.5524/101058. 
  132. "The genome of Eucalyptus grandis". Nature 510 (7505): 356–62. June 2014. doi:10.1038/nature13308. PMID 24919147. Bibcode2014Natur.510..356M. 
  133. "The draft nuclear genome assembly of Eucalyptus pauciflora: a pipeline for comparing de novo assemblies". GigaScience 9 (1). January 2020. doi:10.1093/gigascience/giz160. PMID 31895413. 
  134. "Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome". GigaScience 9 (3). March 2020. doi:10.1093/gigascience/giaa015. PMID 32141509. 
  135. "The genome of woodland strawberry (Fragaria vesca)". Nature Genetics 43 (2): 109–16. February 2011. doi:10.1038/ng.740. PMID 21186353. 
  136. "The genome of the domesticated apple (Malus × domestica Borkh.)". Nature Genetics 42 (10): 833–9. October 2010. doi:10.1038/ng.654. PMID 20802477. 
  137. 137.0 137.1 137.2 "Four Rosaceae Genomes Released". Gramene: A Resource for Comparative Plant Genomics. 11 June 2013. http://news.gramene.org/node/195. 
  138. "The genome of Prunus mume". Nature Communications 3: 1318. 2012. doi:10.1038/ncomms2290. PMID 23271652. Bibcode2012NatCo...3.1318Z. 
  139. "The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution". Nature Genetics 45 (5): 487–94. May 2013. doi:10.1038/ng.2586. PMID 23525075. 
  140. "The genome of the pear (Pyrus bretschneideri Rehd.)". Genome Research 23 (2): 396–408. February 2013. doi:10.1101/gr.144311.112. PMID 23149293. 
  141. "A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome". GigaScience 7 (8). August 2018. doi:10.1093/gigascience/giy094. PMID 30107523. 
  142. 142.0 142.1 "Citrus clementina". Phytozome v9.1. http://www.phytozome.net/clementine.php. 
  143. "The draft genome of sweet orange (Citrus sinensis)". Nature Genetics 45 (1): 59–66. January 2013. doi:10.1038/ng.2472. PMID 23179022. 
  144. "The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)". Science 313 (5793): 1596–604. September 2006. doi:10.1126/science.1128691. PMID 16973872. Bibcode2006Sci...313.1596T. https://digital.library.unt.edu/ark:/67531/metadc883930/. 
  145. "The draft genome sequence of a desert tree Populus pruinosa". GigaScience 6 (9): 1–7. September 2017. doi:10.1093/gigascience/gix075. PMID 28938721. 
  146. "De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China". GigaScience 8 (7). July 2019. doi:10.1093/gigascience/giz085. PMID 31307060. 
  147. "Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics". GigaScience 6 (5): 1–14. May 2017. doi:10.1093/gigascience/gix023. PMID 28368449. 
  148. "Pseudomolecule-level assembly of the Chinese oil tree yellowhorn (Xanthoceras sorbifolium) genome". GigaScience 8 (6). June 2019. doi:10.1093/gigascience/giz070. PMID 31241154. 
  149. "The genome assembly and annotation of yellowhorn (Xanthoceras sorbifolium Bunge)". GigaScience 8 (6). June 2019. doi:10.1093/gigascience/giz071. PMID 31241155. 
  150. "Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family". GigaScience 9 (3). March 2020. doi:10.1093/gigascience/giaa013. PMID 32118265. 
  151. "The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla". Nature 449 (7161): 463–7. September 2007. doi:10.1038/nature06148. PMID 17721507. Bibcode2007Natur.449..463J. 
  152. "A draft genome and transcriptome of common milkweed (Asclepias syriaca) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae". PeerJ 7: e7649. 2019-09-20. doi:10.7717/peerj.7649. ISSN 2167-8359. PMID 31579586. 
  153. "Hybrid de novo genome assembly of the Chinese herbal fleabane Erigeron breviscapus". GigaScience 6 (6): 1–7. June 2017. doi:10.1093/gigascience/gix028. PMID 28431028. 
  154. "The Sunflower Genome Database". https://www.sunflowergenome.org/. 
  155. "The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution". Nature 546 (7656): 148–152. 2017. doi:10.1038/nature22380. PMID 28538728. Bibcode2017Natur.546..148B. 
  156. "Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce". Nature Communications 8: 14953. 2017. doi:10.1038/ncomms14953. PMID 28401891. Bibcode2017NatCo...814953R. 
  157. "Genome assembly of the Pink Ipê (Handroanthus impetiginosus, Bignoniaceae), a highly valued, ecologically keystone Neotropical timber forest tree". GigaScience 7 (1): 1–16. January 2018. doi:10.1093/gigascience/gix125. PMID 29253216. 
  158. "Diospyros oleifera Cheng) genome provides new insights into the inheritance of astringency and ancestral evolution". Horticulture Research 6 (1): 138. 2019-12-18. doi:10.1038/s41438-019-0227-2. PMID 31871686. 
  159. "A high-quality chromosomal genome assembly of Diospyros oleiferaCheng". GigaScience 9 (1). January 2020. doi:10.1093/gigascience/giz164. PMID 31944244. 
  160. "Hybrid de novo genome assembly of the Chinese herbal plant danshen (Salvia miltiorrhiza Bunge)". GigaScience 4 (1): 62. 2015-12-01. doi:10.1186/s13742-015-0104-3. PMID 26673920. 
  161. "Draft Genome Sequence of Mentha longifolia and Development of Resources for Mint Cultivar Improvement" (in English). Molecular Plant 10 (2): 323–339. February 2017. doi:10.1016/j.molp.2016.10.018. PMID 27867107. 
  162. "A chromosomal-scale genome assembly of Tectona grandis reveals the importance of tandem gene duplication and enables discovery of genes in natural product biosynthetic pathways". GigaScience 8 (3). March 2019. doi:10.1093/gigascience/giz005. PMID 30698701. 
  163. "Architecture and evolution of a minute plant genome". Nature 498 (7452): 94–8. June 2013. doi:10.1038/nature12132. PMID 23665961. Bibcode2013Natur.498...94I. 
  164. "De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin". GigaScience 6 (9): 1–7. September 2017. doi:10.1093/gigascience/gix065. PMID 28922823. 
  165. "Genomic analyses of a "living fossil": The endangered dove-tree". Molecular Ecology Resources n/a (n/a). January 2020. doi:10.1111/1755-0998.13138. PMID 31970919. 
  166. "Mimulus guttatus". Phytozome v9.1. http://www.phytozome.net/mimulus.php. 
  167. "Primula vulgaris (primrose) genome assembly, annotation and gene expression, with comparative genomics on the heterostyly supergene". Scientific Reports 8 (1): 17942. December 2018. doi:10.1038/s41598-018-36304-4. PMID 30560928. Bibcode2018NatSR...817942C. 
  168. "Details for species Solanum lycopersicum". Sol Genomics Network. http://solgenomics.net/organism/1/view/. 
  169. 169.0 169.1 Tomato Genome Consortium (May 2012). "The tomato genome sequence provides insights into fleshy fruit evolution". Nature 485 (7400): 635–41. doi:10.1038/nature11119. PMID 22660326. Bibcode2012Natur.485..635T. 
  170. "Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome". GigaScience 8 (10). 2019-10-01. doi:10.1093/gigascience/giz115. PMID 31574156. PMC 6771550. https://academic.oup.com/gigascience/article/8/10/giz115/5579996. 
  171. "Spud DB". http://solanaceae.plantbiology.msu.edu/index.shtml. 
  172. "Genome sequence and analysis of the tuber crop potato". Nature 475 (7355): 189–95. July 2011. doi:10.1038/nature10158. PMID 21743474. 
  173. "Genome Reduction Uncovers a Large Dispensable Genome and Adaptive Role for Copy Number Variation in Asexually Propagated Solanum tuberosum". The Plant Cell 28 (2): 388–405. February 2016. doi:10.1105/tpc.15.00538. PMID 26772996. 
  174. "The Solanum commersonii Genome Sequence Provides Insights into Adaptation to Stress Conditions and Genome Evolution of Wild Potato Relatives". The Plant Cell 27 (4): 954–68. April 2015. doi:10.1105/tpc.114.135954. PMID 25873387. 
  175. "Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris". Nature Communications 9 (1): 2515. June 2018. doi:10.1038/s41467-018-04344-z. PMID 29955043. Bibcode2018NatCo...9.2515V. 
  176. "Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis". Nature Communications 9 (1): 2683. July 2018. doi:10.1038/s41467-018-04721-8. PMID 29992948. Bibcode2018NatCo...9.2683S. 
  177. "A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research". Molecular Plant-Microbe Interactions 25 (12): 1523–30. December 2012. doi:10.1094/MPMI-06-12-0148-TA. PMID 22876960. 
  178. 178.0 178.1 "Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis". Genome Biology 14 (6): R60. June 2013. doi:10.1186/gb-2013-14-6-r60. PMID 23773524. 
  179. "Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species". Nature Genetics 46 (3): 270–8. March 2014. doi:10.1038/ng.2877. PMID 24441736. 
  180. 180.0 180.1 "Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization". Proceedings of the National Academy of Sciences of the United States of America 111 (14): 5135–40. April 2014. doi:10.1073/pnas.1400975111. PMID 24591624. Bibcode2014PNAS..111.5135Q. 
  181. "The Petunia Platform". http://www.petuniaplatform.net/. 
  182. "Reference genome sequence of the model plant Setaria". Nature Biotechnology 30 (6): 555–61. May 2012. doi:10.1038/nbt.2196. PMID 22580951. 
  183. "Genome sequence of the progenitor of the wheat D genome Aegilops tauschii". Nature 551 (7443): 498–502. November 2017. doi:10.1038/nature24486. PMID 29143815. Bibcode2017Natur.551..498L. 
  184. The International Brachypodium Initiative (February 2010). "Genome sequencing and analysis of the model grass Brachypodium distachyon". Nature 463 (7282): 763–8. doi:10.1038/nature08747. PMID 20148030. Bibcode2010Natur.463..763T. 
  185. "The Coix Genome Provides Insights into Panicoideae Evolution and Papery Hull Domestication". Molecular Plant 13 (2): 309–320. February 2020. doi:10.1016/j.molp.2019.11.008. PMID 31778843. 
  186. "3 panicoid grass species Dichanthelium oligosanthes". Genome Biology 17 (1): 223. October 2016. doi:10.1186/s13059-016-1080-3. PMID 27793170. 
  187. "A high-quality genome of Eragrostis curvula grass provides insights into Poaceae evolution and supports new strategies to enhance forage quality". Scientific Reports 9 (1): 10250. July 2019. doi:10.1038/s41598-019-46610-0. PMID 31308395. 
  188. "A physical, genetic and functional sequence assembly of the barley genome". Nature 491 (7426): 711–6. November 2012. doi:10.1038/nature11543. PMID 23075845. Bibcode2012Natur.491..711T. http://ousar.lib.okayama-u.ac.jp/files/public/4/49077/20160528095302759502/Nature_491_711–716.pdf. 
  189. "A chromosome conformation capture ordered sequence of the barley genome". Nature 544 (7651): 427–433. April 2017. doi:10.1038/nature22043. PMID 28447635. Bibcode2017Natur.544..427M. 
  190. "Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution". Nature Communications 4: 1595. 2013. doi:10.1038/ncomms2596. PMID 23481403. Bibcode2013NatCo...4.1595C. 
  191. "Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza". The Plant Journal 63 (6): 990–1003. September 2010. doi:10.1111/j.1365-313X.2010.04293.x. PMID 20626650. 
  192. "A map of rice genome variation reveals the origin of cultivated rice". Nature 490 (7421): 497–501. October 2012. doi:10.1038/nature11532. PMID 23034647. Bibcode2012Natur.490..497H. 
  193. "Sequencing the rice genome". The Plant Cell 12 (11): 2011–7. November 2000. doi:10.1105/tpc.12.11.2011. PMID 11090205. 
  194. "A draft sequence of the rice genome (Oryza sativa L. ssp. indica)". Science 296 (5565): 79–92. April 2002. doi:10.1126/science.1068037. PMID 11935017. Bibcode2002Sci...296...79Y. 
  195. "A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)". Science 296 (5565): 92–100. April 2002. doi:10.1126/science.1068275. PMID 11935018. Bibcode2002Sci...296...92G. 
  196. "Panicum virgatum". Phytozome v9.1. http://www.phytozome.net/panicumvirgatum.php. 
  197. "The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)". Nature Genetics 45 (4): 456–61, 461e1-2. April 2013. doi:10.1038/ng.2569. PMID 23435089. 
  198. "Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)". GigaScience 7 (10). October 2018. doi:10.1093/gigascience/giy115. PMID 30202850. 
  199. "The Sorghum bicolor genome and the diversification of grasses". Nature 457 (7229): 551–6. January 2009. doi:10.1038/nature07723. PMID 19189423. Bibcode2009Natur.457..551P. http://ddr.nal.usda.gov/bitstream/10113/27491/1/IND44178888.pdf. Retrieved 2015-08-29. 
  200. "Shifting the limits in wheat research and breeding using a fully annotated reference genome". Science 361 (6403): 705. August 2018. doi:10.1126/science.aar7191. PMID 30115783. http://research-repository.uwa.edu.au/en/publications/shifting-the-limits-in-wheat-research-and-breeding-using-a-fully-annotated-reference-genome(8883a580-b33c-4558-b37f-291af8c61c84).html. 
  201. "Draft genome of the wheat A-genome progenitor Triticum urartu". Nature 496 (7443): 87–90. April 2013. doi:10.1038/nature11997. PMID 23535596. Bibcode2013Natur.496...87L. 
  202. "Maize Sequence". Gramene. http://www.maizesequence.org/Zea_mays/Info/Index?db=core. 
  203. "The B73 maize genome: complexity, diversity, and dynamics". Science 326 (5956): 1112–5. November 2009. doi:10.1126/science.1178534. PMID 19965430. Bibcode2009Sci...326.1112S. https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1206&context=stat_las_pubs. 
  204. "Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments". Nature Biotechnology 35 (10): 969–976. September 2017. doi:10.1038/nbt.3943. PMID 28922347. 
  205. 205.0 205.1 "The pineapple genome and the evolution of CAM photosynthesis". Nature Genetics 47 (12): 1435–42. December 2015. doi:10.1038/ng.3435. PMID 26523774. 
  206. "The banana (Musa acuminata) genome and the evolution of monocotyledonous plants". Nature 488 (7410): 213–7. August 2012. doi:10.1038/nature11241. PMID 22801500. Bibcode2012Natur.488..213D. 
  207. "A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids". BMC Genomics 14: 683. October 2013. doi:10.1186/1471-2164-14-683. PMID 24094114. 
  208. 208.0 208.1 "The chromosome-level genome assemblies of two rattans (Calamus simplicifolius and Daemonorops jenkinsiana)". GigaScience 7 (9). September 2018. doi:10.1093/gigascience/giy097. PMID 30101322. 
  209. "The genome draft of coconut (Cocos nucifera)". GigaScience 6 (11): 1–11. November 2017. doi:10.1093/gigascience/gix095. PMID 29048487. 
  210. "De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera)". Nature Biotechnology 29 (6): 521–7. May 2011. doi:10.1038/nbt.1860. PMID 21623354. 
  211. "Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds". Nature 500 (7462): 335–9. August 2013. doi:10.1038/nature12309. PMID 23883927. Bibcode2013Natur.500..335S. 
  212. "The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle". Nature Communications 5: 3311. 2014. doi:10.1038/ncomms4311. PMID 24548928. Bibcode2014NatCo...5.3311W. 
  213. "The genome sequence of the orchid Phalaenopsis equestris". Nature Genetics 47 (1): 65–72. January 2015. doi:10.1038/ng.3149. PMID 25420146. 
  214. 214.0 214.1 "Comparative genomics of two jute species and insight into fibre biogenesis". Nature Plants 3 (2): 16223. January 2017. doi:10.1038/nplants.2016.223. PMID 28134914. 
  215. "Corchorus olitorius cv. JRO-524 (Navin)". Genomics Data 12: 151–154. June 2017. doi:10.1016/j.gdata.2017.05.007. PMID 28540183. 
  216. "Welcome to the British Ash Tree Genome Project". The British Ash Tree Genome Project. The School of Biological & Chemical Sciences. http://www.ashgenome.org. 
  217. Heap, Tom (2013-06-16). "Ash genome reveals fungus resistance". BBC News. https://www.bbc.co.uk/news/science-environment-22913111.