Astronomy:490 Veritas

From HandWiki
Revision as of 09:41, 6 February 2024 by Carolyn (talk | contribs) (simplify)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Main-belt asteroid
490 Veritas
Discovery
Discovered byMax Wolf
Discovery siteHeidelberg Obs.
Discovery date3 September 1902
Designations
(490) Veritas
Pronunciation/ˈvɛrɪtæs/[2]
1902 JP
Minor planet categorymain-belt · (outer)
Veritas[1]
AdjectivesVeritasian[3]
Orbital characteristics[4]
Epoch 31 July 2016 (JD 2457600.5)
Uncertainty parameter 0
Observation arc113.37 yr (41409 d)
|{{{apsis}}}|helion}}3.4715 astronomical unit|AU (519.33 Gm)
|{{{apsis}}}|helion}}2.8719 AU (429.63 Gm)
3.1717 AU (474.48 Gm)
Eccentricity0.094527
Orbital period5.65 yr (2063.2 d)
Mean anomaly31.094°
Mean motion0° 10m 28.164s / day
Inclination9.2809°
Longitude of ascending node178.335°
194.390°
Earth MOID1.87147 AU (279.968 Gm)
Jupiter MOID1.98443 AU (296.867 Gm)
TJupiter3.175
Physical characteristics
Dimensions110.96 ± 3.80 km[5]
115.55±5.5 km[4]
Mass(5.99 ± 2.23) × 1018 kg[5]
Mean density8.37 ± 3.23 g/cm3[5]
Rotation period7.930 h (0.3304 d)
Geometric albedo0.0622±0.006
Absolute magnitude (H)8.53,[6] 8.32[4]


Veritas, minor planet designation 490 Veritas, is a carbonaceous Veritasian asteroid, which may have been involved in one of the more massive asteroid-asteroid collisions of the past 100 million years. It was discovered by German astronomer Max Wolf at Heidelberg Observatory on 3 September 1902.

Description

With an diameter of more than 100 kilometers, Veritas is the largest member and namesake of the Veritas family, a mid-sized asteroid family of carbonaceous asteroids in the outer main-belt, that formed recently approximately 8.5±0.5 million years ago.[1][7]:8,23 David Nesvorný of the Southwest Research Institute in Boulder traced the orbits of these bodies back in time, and calculated that they formed in a collision of a body at least 150 km in diameter with a smaller asteroid. Veritas and Undina would have been the largest fragments of that collision which caused a "late Miocene dust shower". The family consists of more than a thousand known members including 1086 Nata, 2428 Kamenyar and 2934 Aristophanes.

Late Miocene dust shower

Substantiating Nesvorný's estimate, Kenneth Farley et al. found evidence in sea-floor sediments of a fourfold increase in the amount of cosmic dust reaching Earth's surface, which began 8.2 million years ago and tapered off over the next million and a half years. This is one of the largest increases in dust deposits of the past 100 million years.[8]

The suspected Veritas collision would have been too far from Jupiter for the fragments to have been slung into a collision course with Earth. However, solar radiation would have caused the resulting dust to drift inward to Earth orbit over a time span consistent with the record of dust in the ocean sediment.

Today continuing collisions among Veritas-family asteroids are estimated to send five thousand tons of cosmic dust to Earth each year, 15% of the total.

Study

490 Veritas has been observed to occult 13 stars between 2006 and 2023.

References

  1. 1.0 1.1 "Asteroid 490 Veritas – Nesvorny HCM Asteroid Families V3.0". Small Bodies Data Ferret. https://sbntools.psi.edu/ferret/SimpleSearch/results.action?targetName=490+Veritas. 
  2. Noah Webster (1884) A Practical Dictionary of the English Language
  3. James Morrow (1990) City of Truth
  4. 4.0 4.1 4.2 Yeomans, Donald K., "490 Veritas", JPL Small-Body Database Browser (NASA Jet Propulsion Laboratory), https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=490, retrieved 9 May 2016. 
  5. 5.0 5.1 5.2 Carry, B. (December 2012), "Density of asteroids", Planetary and Space Science 73 (1): 98–118, doi:10.1016/j.pss.2012.03.009, Bibcode2012P&SS...73...98C.  See Table 1.
  6. Warner, Brian D. (December 2007), "Initial Results of a Dedicated H-G Project", The Minor Planet Bulletin 34 (4): 113–119, Bibcode2007MPBu...34..113W. 
  7. Nesvorný, D.; Broz, M.; Carruba, V. (December 2014). "Identification and Dynamical Properties of Asteroid Families". Asteroids IV. pp. 297–321. doi:10.2458/azu_uapress_9780816532131-ch016. ISBN 9780816532131. Bibcode2015aste.book..297N. 
  8. Farley, Kenneth A.; Vokrouhlický, David; Bottke, William F.; Nesvorný, David (January 2006). "A late Miocene dust shower from the break-up of an asteroid in the main belt". Nature 439 (7074): 295–297. doi:10.1038/nature04391. PMID 16421563. Bibcode2006Natur.439..295F. http://astro.troja.mff.cuni.cz/davok/papers/veritas_he3.pdf. Retrieved 4 September 2017. 

External links