LSH (hash function)
LSH is a cryptographic hash function designed in 2014 by South Korea to provide integrity in general-purpose software environments such as PCs and smart devices.[1] LSH is one of the cryptographic algorithms approved by the Korean Cryptographic Module Validation Program (KCMVP). And it is the national standard of South Korea (KS X 3262).
Specification
The overall structure of the hash function LSH is shown in the following figure.
The hash function LSH has the wide-pipe Merkle-Damgård structure with one-zeros padding. The message hashing process of LSH consists of the following three stages.
- Initialization:
- One-zeros padding of a given bit string message.
- Conversion to 32-word array message blocks from the padded bit string message.
- Initialization of a chaining variable with the initialization vector.
- Compression:
- Updating of chaining variables by iteration of a compression function with message blocks.
- Finalization:
- Generation of an [math]\displaystyle{ n }[/math]-bit hash value from the final chaining variable.
[math]\displaystyle{ \qquad }[/math]One-zeros padding of [math]\displaystyle{ m }[/math] [math]\displaystyle{ \qquad }[/math]Generation of [math]\displaystyle{ t }[/math] message blocks [math]\displaystyle{ \{ \textsf{M}^{(i)} \}_{i=0}^{t-1} }[/math], where [math]\displaystyle{ t = \Big\lceil \frac{|m| + 1}{32w} \Big\rceil }[/math] from the padded bit string [math]\displaystyle{ \qquad }[/math][math]\displaystyle{ \textsf{CV}^{(0)} \leftarrow \textsf{IV} }[/math] [math]\displaystyle{ \qquad }[/math]for [math]\displaystyle{ i = 0 }[/math] to [math]\displaystyle{ (t-1) }[/math] do [math]\displaystyle{ \qquad }[/math][math]\displaystyle{ \qquad }[/math][math]\displaystyle{ \textsf{CV}^{(i+1)} \leftarrow \textrm{CF} (\textsf{CV}^{(i)}, \textsf{M}^{(i)}) }[/math] [math]\displaystyle{ \qquad }[/math]end for [math]\displaystyle{ \qquad }[/math][math]\displaystyle{ h \leftarrow \textrm{FIN}_n(\textsf{CV}^{(t)}) }[/math] [math]\displaystyle{ \qquad }[/math]return [math]\displaystyle{ h }[/math] |
The specifications of the hash function LSH are as follows.
Algorithm | Digest size in bits ([math]\displaystyle{ n }[/math]) | Number of step functions ([math]\displaystyle{ N_s }[/math]) | Chaining variable size in bits | Message block size in bits | Word size in bits ([math]\displaystyle{ w }[/math]) |
---|---|---|---|---|---|
LSH-256-224 | 224 | 26 | 512 | 1024 | 32 |
LSH-256-256 | 256 | ||||
LSH-512-224 | 224 | 28 | 1024 | 2048 | 64 |
LSH-512-256 | 256 | ||||
LSH-512-384 | 384 | ||||
LSH-512-512 | 512 |
Initialization
Let [math]\displaystyle{ m }[/math] be a given bit string message. The given [math]\displaystyle{ m }[/math] is padded by one-zeros, i.e., the bit ‘1’ is appended to the end of [math]\displaystyle{ m }[/math], and the bit ‘0’s are appended until a bit length of a padded message is [math]\displaystyle{ 32wt }[/math], where [math]\displaystyle{ t = \lceil (|m| + 1)/32w\rceil }[/math] and [math]\displaystyle{ \lceil x \rceil }[/math] is the smallest integer not less than [math]\displaystyle{ x }[/math].
Let [math]\displaystyle{ m_p = m_0 \| m_1 \| \ldots \| m_{(32wt-1)} }[/math] be the one-zeros-padded [math]\displaystyle{ 32wt }[/math]-bit string of [math]\displaystyle{ m }[/math]. Then [math]\displaystyle{ m_p }[/math] is considered as a [math]\displaystyle{ 4wt }[/math]-byte array [math]\displaystyle{ m_a = (m[0], \ldots , m[4wt-1]) }[/math], where [math]\displaystyle{ m[k] = m_{8k} \| m_{(8k+1)} \| \ldots \| m_{(8k+7)} }[/math] for all [math]\displaystyle{ 0 \le k \le (4wt-1) }[/math]. The [math]\displaystyle{ 4wt }[/math]-byte array [math]\displaystyle{ m_a }[/math] converts into a [math]\displaystyle{ 32t }[/math]-word array [math]\displaystyle{ \textsf{M} = (M[0], \ldots , M[32t-1]) }[/math] as follows.
[math]\displaystyle{ M[s] \leftarrow m[ws/8+(w/8-1)] \| \ldots \| m[ws/8+1] \| m[ws/8] }[/math] [math]\displaystyle{ (0 \le s \le (32t-1)) }[/math]
From the word array [math]\displaystyle{ \textsf{M} }[/math], we define the [math]\displaystyle{ t }[/math] 32-word array message blocks [math]\displaystyle{ \{ \textsf{M}^{(i)} \}_{i=0}^{t-1} }[/math] as follows.
[math]\displaystyle{ \textsf{M}^{(i)} \leftarrow (M[32i], M[32i+1], \ldots , M[32i+31]) }[/math] [math]\displaystyle{ (0 \le i \le (t-1)) }[/math]
The 16-word array chaining variable [math]\displaystyle{ \textsf{CV}^{(0)} }[/math] is initialized to the initialization vector [math]\displaystyle{ \textsf{IV} }[/math].
[math]\displaystyle{ \textsf{CV}^{(0)}[l] \leftarrow \textsf{IV}[l] }[/math] [math]\displaystyle{ (0 \le l \le 15) }[/math]
The initialization vector [math]\displaystyle{ \textsf{IV} }[/math] is as follows. In the following tables, all values are expressed in hexadecimal form.
[math]\displaystyle{ \textsf{IV}[0] }[/math] | [math]\displaystyle{ \textsf{IV}[1] }[/math] | [math]\displaystyle{ \textsf{IV}[2] }[/math] | [math]\displaystyle{ \textsf{IV}[3] }[/math] | [math]\displaystyle{ \textsf{IV}[4] }[/math] | [math]\displaystyle{ \textsf{IV}[5] }[/math] | [math]\displaystyle{ \textsf{IV}[6] }[/math] | [math]\displaystyle{ \textsf{IV}[7] }[/math] |
---|---|---|---|---|---|---|---|
068608D3 | 62D8F7A7 | D76652AB | 4C600A43 | BDC40AA8 | 1ECA0B68 | DA1A89BE | 3147D354 |
[math]\displaystyle{ \textsf{IV}[8] }[/math] | [math]\displaystyle{ \textsf{IV}[9] }[/math] | [math]\displaystyle{ \textsf{IV}[10] }[/math] | [math]\displaystyle{ \textsf{IV}[11] }[/math] | [math]\displaystyle{ \textsf{IV}[12] }[/math] | [math]\displaystyle{ \textsf{IV}[13] }[/math] | [math]\displaystyle{ \textsf{IV}[14] }[/math] | [math]\displaystyle{ \textsf{IV}[15] }[/math] |
707EB4F9 | F65B3862 | 6B0B2ABE | 56B8EC0A | CF237286 | EE0D1727 | 33636595 | 8BB8D05F |
[math]\displaystyle{ \textsf{IV}[0] }[/math] | [math]\displaystyle{ \textsf{IV}[1] }[/math] | [math]\displaystyle{ \textsf{IV}[2] }[/math] | [math]\displaystyle{ \textsf{IV}[3] }[/math] | [math]\displaystyle{ \textsf{IV}[4] }[/math] | [math]\displaystyle{ \textsf{IV}[5] }[/math] | [math]\displaystyle{ \textsf{IV}[6] }[/math] | [math]\displaystyle{ \textsf{IV}[7] }[/math] |
---|---|---|---|---|---|---|---|
46A10F1F | FDDCE486 | B41443A8 | 198E6B9D | 3304388D | B0F5A3C7 | B36061C4 | 7ADBD553 |
[math]\displaystyle{ \textsf{IV}[8] }[/math] | [math]\displaystyle{ \textsf{IV}[9] }[/math] | [math]\displaystyle{ \textsf{IV}[10] }[/math] | [math]\displaystyle{ \textsf{IV}[11] }[/math] | [math]\displaystyle{ \textsf{IV}[12] }[/math] | [math]\displaystyle{ \textsf{IV}[13] }[/math] | [math]\displaystyle{ \textsf{IV}[14] }[/math] | [math]\displaystyle{ \textsf{IV}[15] }[/math] |
105D5378 | 2F74DE54 | 5C2F2D95 | F2553FBE | 8051357A | 138668C8 | 47AA4484 | E01AFB41 |
[math]\displaystyle{ \textsf{IV}[0] }[/math] | [math]\displaystyle{ \textsf{IV}[1] }[/math] | [math]\displaystyle{ \textsf{IV}[2] }[/math] | [math]\displaystyle{ \textsf{IV}[3] }[/math] |
---|---|---|---|
0C401E9FE8813A55 | 4A5F446268FD3D35 | FF13E452334F612A | F8227661037E354A |
[math]\displaystyle{ \textsf{IV}[4] }[/math] | [math]\displaystyle{ \textsf{IV}[5] }[/math] | [math]\displaystyle{ \textsf{IV}[6] }[/math] | [math]\displaystyle{ \textsf{IV}[7] }[/math] |
A5F223723C9CA29D | 95D965A11AED3979 | 01E23835B9AB02CC | 52D49CBAD5B30616 |
[math]\displaystyle{ \textsf{IV}[8] }[/math] | [math]\displaystyle{ \textsf{IV}[9] }[/math] | [math]\displaystyle{ \textsf{IV}[10] }[/math] | [math]\displaystyle{ \textsf{IV}[11] }[/math] |
9E5C2027773F4ED3 | 66A5C8801925B701 | 22BBC85B4C6779D9 | C13171A42C559C23 |
[math]\displaystyle{ \textsf{IV}[12] }[/math] | [math]\displaystyle{ \textsf{IV}[13] }[/math] | [math]\displaystyle{ \textsf{IV}[14] }[/math] | [math]\displaystyle{ \textsf{IV}[15] }[/math] |
31E2B67D25BE3813 | D522C4DEED8E4D83 | A79F5509B43FBAFE | E00D2CD88B4B6C6A |
[math]\displaystyle{ \textsf{IV}[0] }[/math] | [math]\displaystyle{ \textsf{IV}[1] }[/math] | [math]\displaystyle{ \textsf{IV}[2] }[/math] | [math]\displaystyle{ \textsf{IV}[3] }[/math] |
---|---|---|---|
6DC57C33DF989423 | D8EA7F6E8342C199 | 76DF8356F8603AC4 | 40F1B44DE838223A |
[math]\displaystyle{ \textsf{IV}[4] }[/math] | [math]\displaystyle{ \textsf{IV}[5] }[/math] | [math]\displaystyle{ \textsf{IV}[6] }[/math] | [math]\displaystyle{ \textsf{IV}[7] }[/math] |
39FFE7CFC31484CD | 39C4326CC5281548 | 8A2FF85A346045D8 | FF202AA46DBDD61E |
[math]\displaystyle{ \textsf{IV}[8] }[/math] | [math]\displaystyle{ \textsf{IV}[9] }[/math] | [math]\displaystyle{ \textsf{IV}[10] }[/math] | [math]\displaystyle{ \textsf{IV}[11] }[/math] |
CF785B3CD5FCDB8B | 1F0323B64A8150BF | FF75D972F29EA355 | 2E567F30BF1CA9E1 |
[math]\displaystyle{ \textsf{IV}[12] }[/math] | [math]\displaystyle{ \textsf{IV}[13] }[/math] | [math]\displaystyle{ \textsf{IV}[14] }[/math] | [math]\displaystyle{ \textsf{IV}[15] }[/math] |
B596875BF8FF6DBA | FCCA39B089EF4615 | ECFF4017D020B4B6 | 7E77384C772ED802 |
[math]\displaystyle{ \textsf{IV}[0] }[/math] | [math]\displaystyle{ \textsf{IV}[1] }[/math] | [math]\displaystyle{ \textsf{IV}[2] }[/math] | [math]\displaystyle{ \textsf{IV}[3] }[/math] |
---|---|---|---|
53156A66292808F6 | B2C4F362B204C2BC | B84B7213BFA05C4E | 976CEB7C1B299F73 |
[math]\displaystyle{ \textsf{IV}[4] }[/math] | [math]\displaystyle{ \textsf{IV}[5] }[/math] | [math]\displaystyle{ \textsf{IV}[6] }[/math] | [math]\displaystyle{ \textsf{IV}[7] }[/math] |
DF0CC63C0570AE97 | DA4441BAA486CE3F | 6559F5D9B5F2ACC2 | 22DACF19B4B52A16 |
[math]\displaystyle{ \textsf{IV}[8] }[/math] | [math]\displaystyle{ \textsf{IV}[9] }[/math] | [math]\displaystyle{ \textsf{IV}[10] }[/math] | [math]\displaystyle{ \textsf{IV}[11] }[/math] |
BBCDACEFDE80953A | C9891A2879725B3E | 7C9FE6330237E440 | A30BA550553F7431 |
[math]\displaystyle{ \textsf{IV}[12] }[/math] | [math]\displaystyle{ \textsf{IV}[13] }[/math] | [math]\displaystyle{ \textsf{IV}[14] }[/math] | [math]\displaystyle{ \textsf{IV}[15] }[/math] |
BB08043FB34E3E30 | A0DEC48D54618EAD | 150317267464BC57 | 32D1501FDE63DC93 |
[math]\displaystyle{ \textsf{IV}[0] }[/math] | [math]\displaystyle{ \textsf{IV}[1] }[/math] | [math]\displaystyle{ \textsf{IV}[2] }[/math] | [math]\displaystyle{ \textsf{IV}[3] }[/math] |
---|---|---|---|
ADD50F3C7F07094E | E3F3CEE8F9418A4F | B527ECDE5B3D0AE9 | 2EF6DEC68076F501 |
[math]\displaystyle{ \textsf{IV}[4] }[/math] | [math]\displaystyle{ \textsf{IV}[5] }[/math] | [math]\displaystyle{ \textsf{IV}[6] }[/math] | [math]\displaystyle{ \textsf{IV}[7] }[/math] |
8CB994CAE5ACA216 | FBB9EAE4BBA48CC7 | 650A526174725FEA | 1F9A61A73F8D8085 |
[math]\displaystyle{ \textsf{IV}[8] }[/math] | [math]\displaystyle{ \textsf{IV}[9] }[/math] | [math]\displaystyle{ \textsf{IV}[10] }[/math] | [math]\displaystyle{ \textsf{IV}[11] }[/math] |
B6607378173B539B | 1BC99853B0C0B9ED | DF727FC19B182D47 | DBEF360CF893A457 |
[math]\displaystyle{ \textsf{IV}[12] }[/math] | [math]\displaystyle{ \textsf{IV}[13] }[/math] | [math]\displaystyle{ \textsf{IV}[14] }[/math] | [math]\displaystyle{ \textsf{IV}[15] }[/math] |
4981F5E570147E80 | D00C4490CA7D3E30 | 5D73940C0E4AE1EC | 894085E2EDB2D819 |
Compression
In this stage, the [math]\displaystyle{ t }[/math] 32-word array message blocks [math]\displaystyle{ \{ \textsf{M}^{(i)} \}_{i=0}^{t-1} }[/math], which are generated from a message [math]\displaystyle{ m }[/math] in the initialization stage, are compressed by iteration of compression functions. The compression function [math]\displaystyle{ \textrm{CF} : \mathcal{W}^{16} \times \mathcal{W}^{32} \rightarrow \mathcal{W}^{16} }[/math] has two inputs; the [math]\displaystyle{ i }[/math]-th 16-word chaining variable [math]\displaystyle{ \textsf{CV}^{(i)} }[/math] and the [math]\displaystyle{ i }[/math]-th 32-word message block [math]\displaystyle{ \textsf{M}^{(i)} }[/math]. And it returns the [math]\displaystyle{ (i+1) }[/math]-th 16-word chaining variable [math]\displaystyle{ \textsf{CV}^{(i+1)} }[/math]. Here and subsequently, [math]\displaystyle{ \mathcal{W}^t }[/math] denotes the set of all [math]\displaystyle{ t }[/math]-word arrays for [math]\displaystyle{ t \ge 1 }[/math].
The following four functions are used in a compression function:
- Message expansion function [math]\displaystyle{ \textrm{MsgExp}: \mathcal{W}^{32} \rightarrow \mathcal{W}^{16(Ns+1)} }[/math]
- Message addition function [math]\displaystyle{ \textrm{MsgAdd}: \mathcal{W}^{16} \times \mathcal{W}^{16} \rightarrow \mathcal{W}^{16} }[/math]
- Mix function [math]\displaystyle{ \textrm{Mix}_j: \mathcal{W}^{16} \rightarrow \mathcal{W}^{16} }[/math]
- Word-permutation function [math]\displaystyle{ \textrm{WordPerm}: \mathcal{W}^{16} \rightarrow \mathcal{W}^{16} }[/math]
The overall structure of the compression function is shown in the following figure.
In a compression function, the message expansion function [math]\displaystyle{ \textrm{MsgExp} }[/math] generates [math]\displaystyle{ (N_s+1) }[/math] 16-word array sub-messages [math]\displaystyle{ \{ \textsf{M}_j^{(i)} \}_{j=0}^{N_s} }[/math] from given [math]\displaystyle{ \textsf{M}^{(i)} }[/math]. Let [math]\displaystyle{ \textsf{T} = (T[0], \ldots , T[15]) }[/math] be a temporary 16-word array set to the [math]\displaystyle{ i }[/math]-th chaining variable [math]\displaystyle{ \textsf{CV}^{(i)} }[/math]. The [math]\displaystyle{ j }[/math]-th step function [math]\displaystyle{ \textrm{Step}_j }[/math] having two inputs [math]\displaystyle{ \textsf{T} }[/math] and [math]\displaystyle{ \textsf{M}_j^{(i)} }[/math] updates [math]\displaystyle{ \textsf{T} }[/math], i.e., [math]\displaystyle{ \textsf{T} \leftarrow \textrm{Step}_j \left( \textsf{T}, \textsf{M}_j^{(i)} \right) }[/math]. All step functions are proceeded in order [math]\displaystyle{ j = 0, \ldots, N_s - 1 }[/math]. Then one more [math]\displaystyle{ \textrm{MsgAdd} }[/math] operation by [math]\displaystyle{ \textsf{M}_{N_s}^{(i)} }[/math] is proceeded, and the [math]\displaystyle{ (i+1) }[/math]-th chaining variable [math]\displaystyle{ \textsf{CV}^{(i+1)} }[/math] is set to [math]\displaystyle{ \textsf{T} }[/math]. The process of a compression function in detail is as follows.
[math]\displaystyle{ \qquad }[/math][math]\displaystyle{ \{ \textsf{M}_j^{(i)} \}_{j=0}^{N_s} \leftarrow \textrm{MsgExp} \left( \textsf{M}^{(i)} \right) }[/math] [math]\displaystyle{ \qquad }[/math][math]\displaystyle{ \textsf{T} \leftarrow \textsf{CV}^{(i)} }[/math] [math]\displaystyle{ \qquad }[/math]for [math]\displaystyle{ j = 0 }[/math] to [math]\displaystyle{ (N_s - 1) }[/math] do [math]\displaystyle{ \qquad }[/math][math]\displaystyle{ \qquad }[/math][math]\displaystyle{ \textsf{T} \leftarrow \textrm{Step}_j \left( \textsf{T}, \textsf{M}_j^{(i)} \right) }[/math] [math]\displaystyle{ \qquad }[/math]end for [math]\displaystyle{ \qquad }[/math][math]\displaystyle{ \textsf{CV}^{(i+1)} \leftarrow \textrm{MsgAdd} \left( \textsf{T}, \textsf{M}_{N_s}^{(i)} \right) }[/math] [math]\displaystyle{ \qquad }[/math]return [math]\displaystyle{ \textsf{CV}^{(i+1)} }[/math] |
Here the [math]\displaystyle{ j }[/math]-th step function [math]\displaystyle{ \textrm{Step}_j : \mathcal{W}^{16} \times \mathcal{W}^{16} \rightarrow \mathcal{W}^{16} }[/math] is as follows.
[math]\displaystyle{ \textrm{Step}_j := \textrm{WordPerm} \circ \textrm{Mix}_j \circ \textrm{MsgAdd} }[/math] [math]\displaystyle{ (0 \le j \le (N_s-1)) }[/math]
The following figure shows the [math]\displaystyle{ j }[/math]-th step function [math]\displaystyle{ \textrm{Step}_j }[/math] of a compression function.
Message Expansion Function MsgExp
Let [math]\displaystyle{ \textsf{M}^{(i)} = ( M^{(i)}[0], \ldots , M^{(i)}[31] ) }[/math] be the [math]\displaystyle{ i }[/math]-th 32-word array message block. The message expansion function [math]\displaystyle{ \textrm{MsgExp} }[/math] generates [math]\displaystyle{ (N_s + 1) }[/math] 16-word array sub-messages [math]\displaystyle{ \{ \textsf{M}_j^{(i)} \}_{j=0}^{N_s} }[/math] from a message block [math]\displaystyle{ \textsf{M}^{(i)} }[/math]. The first two sub-messages [math]\displaystyle{ \textsf{M}_{0}^{(i)} = ( M_{0}^{(i)}[0], \ldots , M_{0}^{(i)}[15] ) }[/math] and [math]\displaystyle{ \textsf{M}_{1}^{(i)} = ( M_{1}^{(i)}[0], \ldots , M_{1}^{(i)}[15] ) }[/math] are defined as follows.
- [math]\displaystyle{ \textsf{M}_0^{(i)} \leftarrow (M^{(i)}[0], M^{(i)}[1], \ldots , M^{(i)}[15]) }[/math]
- [math]\displaystyle{ \textsf{M}_1^{(i)} \leftarrow (M^{(i)}[16], M^{(i)}[17], \ldots , M^{(i)}[31]) }[/math]
The next sub-messages [math]\displaystyle{ \{ \textsf{M}_j^{(i)} = ( M_{j}^{(i)}[0], \ldots , M_{j}^{(i)}[15] ) \}_{j=2}^{N_s} }[/math] are generated as follows.
- [math]\displaystyle{ \textsf{M}_j^{(i)}[l] \leftarrow \textsf{M}_{j-1}^{(i)}[l] \boxplus\textsf{M}_{j-2}^{(i)}[\tau(l)] }[/math] [math]\displaystyle{ (0 \le l \le 15, \ 2 \le j \le N_s) }[/math]
Here [math]\displaystyle{ \tau }[/math] is the permutation over [math]\displaystyle{ \mathbb{Z}_{16} }[/math] defined as follows.
[math]\displaystyle{ l }[/math] | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ \tau(l) }[/math] | 3 | 2 | 0 | 1 | 7 | 4 | 5 | 6 | 11 | 10 | 8 | 9 | 15 | 12 | 13 | 14 |
Message Addition Function MsgAdd
For two 16-word arrays [math]\displaystyle{ \textsf{X} = (X[0], \ldots , X[15]) }[/math] and [math]\displaystyle{ \textsf{Y} = (Y[0], \ldots , Y[15]) }[/math], the message addition function [math]\displaystyle{ \textrm{MsgAdd} : \mathcal{W}^{16} \times \mathcal{W}^{16} \rightarrow \mathcal{W}^{16} }[/math] is defined as follows.
[math]\displaystyle{ \textrm{MsgAdd}( \textsf{X}, \textsf{Y} ) := (X[0] \oplus Y[0], \ldots , X[15] \oplus Y[15]) }[/math]
Mix Function Mix
The [math]\displaystyle{ j }[/math]-th mix function [math]\displaystyle{ \textrm{Mix}_j: \mathcal{W}^{16} \rightarrow \mathcal{W}^{16} }[/math] updates the 16-word array [math]\displaystyle{ \textsf{T} = (T[0], \ldots , T[15]) }[/math] by mixing every two-word pair; [math]\displaystyle{ T[l] }[/math] and [math]\displaystyle{ T[l+8] }[/math] for [math]\displaystyle{ (0 \le l \lt 8) }[/math]. For [math]\displaystyle{ 0 \le j \lt N_s }[/math], the mix function [math]\displaystyle{ \textrm{Mix}_j }[/math] proceeds as follows.
[math]\displaystyle{ (T[l], T[l+8]) \leftarrow \textrm{Mix}_{j,l}(T[l], T[l+8]) }[/math] [math]\displaystyle{ (0 \le l \lt 8) }[/math]
Here [math]\displaystyle{ \textrm{Mix}_{j,l} }[/math] is a two-word mix function. Let [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] be words. The two-word mix function [math]\displaystyle{ \textrm{Mix}_{j,l} : \mathcal{W}^2 \rightarrow \mathcal{W}^2 }[/math] is defined as follows.
[math]\displaystyle{ \qquad }[/math][math]\displaystyle{ X \leftarrow X \boxplus Y }[/math];[math]\displaystyle{ \qquad X \leftarrow X^{\lll \alpha_j} }[/math]; [math]\displaystyle{ \qquad }[/math][math]\displaystyle{ X \leftarrow X \oplus SC_j[l] }[/math]; [math]\displaystyle{ \qquad }[/math][math]\displaystyle{ Y \leftarrow X \boxplus Y }[/math];[math]\displaystyle{ \qquad Y \leftarrow Y^{\lll \beta_j} }[/math]; [math]\displaystyle{ \qquad }[/math][math]\displaystyle{ X \leftarrow X \boxplus Y }[/math];[math]\displaystyle{ \qquad Y \leftarrow Y^{\lll \gamma_l} }[/math]; [math]\displaystyle{ \qquad }[/math]return [math]\displaystyle{ X }[/math], [math]\displaystyle{ Y }[/math]; |
The two-word mix function [math]\displaystyle{ \textrm{Mix}_{j,l} }[/math] is shown in the following figure.
The bit rotation amounts [math]\displaystyle{ \alpha_j }[/math], [math]\displaystyle{ \beta_j }[/math], [math]\displaystyle{ \gamma_l }[/math] used in [math]\displaystyle{ \textrm{Mix}_{j,l} }[/math] are shown in the following table.
[math]\displaystyle{ w }[/math] | [math]\displaystyle{ j }[/math] | [math]\displaystyle{ \alpha_j }[/math] | [math]\displaystyle{ \beta_j }[/math] | [math]\displaystyle{ \gamma_0 }[/math] | [math]\displaystyle{ \gamma_1 }[/math] | [math]\displaystyle{ \gamma_2 }[/math] | [math]\displaystyle{ \gamma_3 }[/math] | [math]\displaystyle{ \gamma_4 }[/math] | [math]\displaystyle{ \gamma_5 }[/math] | [math]\displaystyle{ \gamma_6 }[/math] | [math]\displaystyle{ \gamma_7 }[/math] |
---|---|---|---|---|---|---|---|---|---|---|---|
32 | even | 29 | 1 | 0 | 8 | 16 | 24 | 24 | 16 | 8 | 0 |
odd | 5 | 17 | |||||||||
64 | even | 23 | 59 | 0 | 16 | 32 | 48 | 8 | 24 | 40 | 56 |
odd | 7 | 3 |
The [math]\displaystyle{ j }[/math]-th 8-word array constant [math]\displaystyle{ \textsf{SC}_j = (SC_j[0], \ldots , SC_j[7]) }[/math] used in [math]\displaystyle{ \textrm{Mix}_{j,l} }[/math] for [math]\displaystyle{ 0 \le l \lt 8 }[/math] is defined as follows. The initial 8-word array constant [math]\displaystyle{ \textsf{SC}_0 = (SC_0[0], \ldots , SC_0[7]) }[/math] is defined in the following table. For [math]\displaystyle{ 1 \le j \lt N_s }[/math], the [math]\displaystyle{ j }[/math]-th constant [math]\displaystyle{ \textsf{SC}_j = (SC_j[0], \ldots , SC_j[7]) }[/math] is generated by [math]\displaystyle{ SC_j[l] \leftarrow SC_{j-1}[l] \boxplus SC_{j-1}[l]^{\lll 8} }[/math] for [math]\displaystyle{ 0 \le l \lt 8 }[/math].
[math]\displaystyle{ w = 32 }[/math] | [math]\displaystyle{ w = 64 }[/math] | |
---|---|---|
[math]\displaystyle{ SC_0[0] }[/math] | 917caf90 | 97884283c938982a |
[math]\displaystyle{ SC_0[1] }[/math] | 6c1b10a2 | ba1fca93533e2355 |
[math]\displaystyle{ SC_0[2] }[/math] | 6f352943 | c519a2e87aeb1c03 |
[math]\displaystyle{ SC_0[3] }[/math] | cf778243 | 9a0fc95462af17b1 |
[math]\displaystyle{ SC_0[4] }[/math] | 2ceb7472 | fc3dda8ab019a82b |
[math]\displaystyle{ SC_0[5] }[/math] | 29e96ff2 | 02825d079a895407 |
[math]\displaystyle{ SC_0[6] }[/math] | 8a9ba428 | 79f2d0a7ee06a6f7 |
[math]\displaystyle{ SC_0[7] }[/math] | 2eeb2642 | d76d15eed9fdf5fe |
Word-Permutation Function WordPerm
Let [math]\displaystyle{ \textsf{X} = (X[0], \ldots , X[15]) }[/math] be a 16-word array. The word-permutation function [math]\displaystyle{ \textrm{WordPerm} : \mathcal{W}^{16} \rightarrow \mathcal{W}^{16} }[/math] is defined as follows.
[math]\displaystyle{ \textrm{WordPerm}( \textsf{X}) = (X[\sigma(0)], \ldots , X[\sigma(15)]) }[/math]
Here [math]\displaystyle{ \sigma }[/math] is the permutation over [math]\displaystyle{ \mathbb{Z}_{16} }[/math] defined by the following table.
[math]\displaystyle{ l }[/math] | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ \sigma(l) }[/math] | 6 | 4 | 5 | 7 | 12 | 15 | 14 | 13 | 2 | 0 | 1 | 3 | 8 | 11 | 10 | 9 |
Finalization
The finalization function [math]\displaystyle{ \textrm{FIN}_n : \mathcal{W}^{16} \rightarrow \{0, 1\}^{n} }[/math] returns [math]\displaystyle{ n }[/math]-bit hash value [math]\displaystyle{ h }[/math] from the final chaining variable [math]\displaystyle{ \textsf{CV}^{(t)} = ( CV^{(t)}[0], \ldots , CV^{(t)}[15]) }[/math]. When [math]\displaystyle{ \textsf{H} = (H[0], \ldots , H[7]) }[/math] is an 8-word variable and [math]\displaystyle{ \textsf{h}_\textsf{b} = (h_b[0], \ldots , h_b[w-1]) }[/math] is a [math]\displaystyle{ w }[/math]-byte variable, the finalization function [math]\displaystyle{ \textrm{FIN}_n }[/math] performs the following procedure.
- [math]\displaystyle{ H[l] \leftarrow CV^{(t)}[l] \oplus CV^{(t)}[l+8] }[/math] [math]\displaystyle{ (0 \le l \le 7) }[/math]
- [math]\displaystyle{ h_b[s] \leftarrow H[\lfloor 8s/w\rfloor ]^{\ggg (8s \mod w)}_{[7:0]} }[/math] [math]\displaystyle{ (0 \le s \le (w-1)) }[/math]
- [math]\displaystyle{ h \leftarrow (h_b[0] \| \ldots \| h_b[w-1])_{[0:n-1]} }[/math]
Here, [math]\displaystyle{ X_{[i:j]} }[/math] denotes [math]\displaystyle{ x_i \| x_{i-1} \| \ldots \| x_j }[/math], the sub-bit string of a word [math]\displaystyle{ X }[/math] for [math]\displaystyle{ i \ge j }[/math]. And [math]\displaystyle{ x_{[i:j]} }[/math] denotes [math]\displaystyle{ x _i \| x_{i+1} \| \ldots \| x_j }[/math], the sub-bit string of a [math]\displaystyle{ l }[/math]-bit string [math]\displaystyle{ x = x_0 \| x_1 \| \ldots \| x_{l-1} }[/math] for [math]\displaystyle{ i \le j }[/math].
Security
LSH is secure against known attacks on hash functions up to now. LSH is collision-resistant for [math]\displaystyle{ q \lt 2^{n/2} }[/math] and preimage-resistant and second-preimage-resistant for [math]\displaystyle{ q \lt 2^n }[/math] in the ideal cipher model, where [math]\displaystyle{ q }[/math] is a number of queries for LSH structure.[1] LSH-256 is secure against all the existing hash function attacks when the number of steps is 13 or more, while LSH-512 is secure if the number of steps is 14 or more. Note that the steps which work as security margin are 50% of the compression function.[1]
Performance
LSH outperforms SHA-2/3 on various software platforms. The following table shows the speed performance of 1MB message hashing of LSH on several platforms.
Platform | P1[lower-alpha 1] | P2[lower-alpha 2] | P3[lower-alpha 3] | P4[lower-alpha 4] | P5[lower-alpha 5] | P6[lower-alpha 6] | P7[lower-alpha 7] | P8[lower-alpha 8] |
---|---|---|---|---|---|---|---|---|
LSH-256-[math]\displaystyle{ n }[/math] | 3.60 | 3.86 | 5.26 | 3.89 | 11.17 | 15.03 | 15.28 | 14.84 |
LSH-512-[math]\displaystyle{ n }[/math] | 2.39 | 5.04 | 7.76 | 5.52 | 8.94 | 18.76 | 19.00 | 18.10 |
- ↑ Intel Core i7-4770K @ 3.5GHz (Haswell), Ubuntu 12.04 64-bit, GCC 4.8.1 with “-m64 -mavx2 -O3”
- ↑ Intel Core i7-2600K @ 3.40GHz (Sandy Bridge), Ubuntu 12.04 64-bit, GCC 4.8.1 with “-m64 -msse4 -O3”
- ↑ Intel Core 2 Quad Q9550 @ 2.83GHz (Yorkfield), Windows 7 32-bit, Visual studio 2012
- ↑ AMD FX-8350 @ 4GHz (Piledriver), Ubuntu 12.04 64-bit, GCC 4.8.1 with “-m64 -mxop -O3”
- ↑ Samsung Exynos 5250 ARM Cortex-A15 @ 1.7GHz dual core (Huins ACHRO 5250), Android 4.1.1
- ↑ Qualcomm Snapdragon 800 Krait 400 @ 2.26GHz quad core (LG G2), Android 4.4.2
- ↑ Qualcomm Snapdragon 800 Krait 400 @ 2.3GHz quad core (Samsung Galaxy S4), Android 4.2.2
- ↑ Qualcomm Snapdragon 400 Krait 300 @ 1.7GHz dual core (Samsung Galaxy S4 mini), Android 4.2.2
The following table is the comparison at the platform based on Haswell, LSH is measured on Intel Core i7-4770k @ 3.5 GHz quad core platform, and others are measured on Intel Core i5-4570S @ 2.9 GHz quad core platform.
Algorithm | Message size in bytes | |||||
---|---|---|---|---|---|---|
long | 4,096 | 1,536 | 576 | 64 | 8 | |
LSH-256-256 | 3.60 | 3.71 | 3.90 | 4.08 | 8.19 | 65.37 |
Skein-512-256 | 5.01 | 5.58 | 5.86 | 6.49 | 13.12 | 104.50 |
Blake-256 | 6.61 | 7.63 | 7.87 | 9.05 | 16.58 | 72.50 |
Grøstl-256 | 9.48 | 10.68 | 12.18 | 13.71 | 37.94 | 227.50 |
Keccak-256 | 10.56 | 10.52 | 9.90 | 11.99 | 23.38 | 187.50 |
SHA-256 | 10.82 | 11.91 | 12.26 | 13.51 | 24.88 | 106.62 |
JH-256 | 14.70 | 15.50 | 15.94 | 17.06 | 31.94 | 257.00 |
LSH-512-512 | 2.39 | 2.54 | 2.79 | 3.31 | 10.81 | 85.62 |
Skein-512-512 | 4.67 | 5.51 | 5.80 | 6.44 | 13.59 | 108.25 |
Blake-512 | 4.96 | 6.17 | 6.82 | 7.38 | 14.81 | 116.50 |
SHA-512 | 7.65 | 8.24 | 8.69 | 9.03 | 17.22 | 138.25 |
Grøstl-512 | 12.78 | 15.44 | 17.30 | 17.99 | 51.72 | 417.38 |
JH-512 | 14.25 | 15.66 | 16.14 | 17.34 | 32.69 | 261.00 |
Keccak-512 | 16.36 | 17.86 | 18.46 | 20.35 | 21.56 | 171.88 |
The following table is measured on Samsung Exynos 5250 ARM Cortex-A15 @ 1.7 GHz dual core platform.
Algorithm | Message size in bytes | |||||
---|---|---|---|---|---|---|
long | 4,096 | 1,536 | 576 | 64 | 8 | |
LSH-256-256 | 11.17 | 11.53 | 12.16 | 12.63 | 22.42 | 192.68 |
Skein-512-256 | 15.64 | 16.72 | 18.33 | 22.68 | 75.75 | 609.25 |
Blake-256 | 17.94 | 19.11 | 20.88 | 25.44 | 83.94 | 542.38 |
SHA-256 | 19.91 | 21.14 | 23.03 | 28.13 | 90.89 | 578.50 |
JH-256 | 34.66 | 36.06 | 38.10 | 43.51 | 113.92 | 924.12 |
Keccak-256 | 36.03 | 38.01 | 40.54 | 48.13 | 125.00 | 1000.62 |
Grøstl-256 | 40.70 | 42.76 | 46.03 | 54.94 | 167.52 | 1020.62 |
LSH-512-512 | 8.94 | 9.56 | 10.55 | 12.28 | 38.82 | 307.98 |
Blake-512 | 13.46 | 14.82 | 16.88 | 20.98 | 77.53 | 623.62 |
Skein-512-512 | 15.61 | 16.73 | 18.35 | 22.56 | 75.59 | 612.88 |
JH-512 | 34.88 | 36.26 | 38.36 | 44.01 | 116.41 | 939.38 |
SHA-512 | 44.13 | 46.41 | 49.97 | 54.55 | 135.59 | 1088.38 |
Keccak-512 | 63.31 | 64.59 | 67.85 | 77.21 | 121.28 | 968.00 |
Grøstl-512 | 131.35 | 138.49 | 150.15 | 166.54 | 446.53 | 3518.00 |
Test vectors
Test vectors for LSH for each digest length are as follows. All values are expressed in hexadecimal form.
LSH-256-224("abc") = F7 C5 3B A4 03 4E 70 8E 74 FB A4 2E 55 99 7C A5 12 6B B7 62 36 88 F8 53 42 F7 37 32
LSH-256-256("abc") = 5F BF 36 5D AE A5 44 6A 70 53 C5 2B 57 40 4D 77 A0 7A 5F 48 A1 F7 C1 96 3A 08 98 BA 1B 71 47 41
LSH-512-224("abc") = D1 68 32 34 51 3E C5 69 83 94 57 1E AD 12 8A 8C D5 37 3E 97 66 1B A2 0D CF 89 E4 89
LSH-512-256("abc") = CD 89 23 10 53 26 02 33 2B 61 3F 1E C1 1A 69 62 FC A6 1E A0 9E CF FC D4 BC F7 58 58 D8 02 ED EC
LSH-512-384("abc") = 5F 34 4E FA A0 E4 3C CD 2E 5E 19 4D 60 39 79 4B 4F B4 31 F1 0F B4 B6 5F D4 5E 9D A4 EC DE 0F 27 B6 6E 8D BD FA 47 25 2E 0D 0B 74 1B FD 91 F9 FE
LSH-512-512("abc") = A3 D9 3C FE 60 DC 1A AC DD 3B D4 BE F0 A6 98 53 81 A3 96 C7 D4 9D 9F D1 77 79 56 97 C3 53 52 08 B5 C5 72 24 BE F2 10 84 D4 20 83 E9 5A 4B D8 EB 33 E8 69 81 2B 65 03 1C 42 88 19 A1 E7 CE 59 6D
Implementations
LSH is free for any use public or private, commercial or non-commercial. The source code for distribution of LSH implemented in C, Java, and Python can be downloaded from KISA's cryptography use activation webpage.[2]
KCMVP
LSH is one of the cryptographic algorithms approved by the Korean Cryptographic Module Validation Program (KCMVP).[3]
Standardization
LSH is included in the following standard.
- KS X 3262, Hash function LSH (in Korean)[4]
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 Kim, Dong-Chan; Hong, Deukjo; Lee, Jung-Keun; Kim, Woo-Hwan; Kwon, Daesung (2015). "LSH: A New Fast Secure Hash Function Family" (in en). Information Security and Cryptology - ICISC 2014. Lecture Notes in Computer Science. 8949. Springer International Publishing. pp. 286–313. doi:10.1007/978-3-319-15943-0_18. ISBN 978-3-319-15943-0. https://link.springer.com/chapter/10.1007/978-3-319-15943-0_18.
- ↑ "KISA 암호이용활성화 - 암호알고리즘 소스코드". https://seed.kisa.or.kr/kisa/Board/22/detailView.do.
- ↑ "KISA 암호이용활성화 - 개요". https://seed.kisa.or.kr/kisa/kcmvp/EgovSummary.do.
- ↑ "Korean Standards & Certifications (in Korean)". https://standard.go.kr.
Original source: https://en.wikipedia.org/wiki/LSH (hash function).
Read more |