Chemistry:Crotonic acid

From HandWiki
Revision as of 11:30, 14 February 2024 by Carolyn (talk | contribs) (link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Crotonic acid
Skeletal formula of crotonic acid
Ball-and-stick model of the crotonic acid molecule
Names
Preferred IUPAC name
(2E)-But-2-enoic acid
Other names
(E)-But-2-enoic acid
(E)-2-Butenoic acid
Crotonic acid
trans-2-Butenoic acid
β-Methylacrylic acid
3-Methylacrylic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
UNII
Properties
C4H6O2
Molar mass 86.090 g·mol−1
Density 1.02 g/cm3
Melting point 70 to 73 °C (158 to 163 °F; 343 to 346 K)
Boiling point 185 to 189 °C (365 to 372 °F; 458 to 462 K)
Acidity (pKa) 4.69 [1]
Hazards
Safety data sheet SIRI.org
Related compounds
Other anions
crotonate
propionic acid
acrylic acid
butyric acid
succinic acid
malic acid
tartaric acid
fumaric acid
pentanoic acid
tetrolic acid
Related compounds
butanol
butyraldehyde
crotonaldehyde
2-butanone
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

Crotonic acid ((2E)-but-2-enoic acid) is a short-chain unsaturated carboxylic acid described by the formula CH3CH=CHCO2H. The name crotonic acid was given because it was erroneously thought to be a saponification product of croton oil.[2] It crystallizes as colorless needles from hot water. With a cis-alkene, Isocrotonic acid is an isomer of crotonic acid. Crotonic acid is soluble in water and many organic solvents. Its odor is similar to that of butyric acid.

Production

Crotonic acid produced industrially by oxidation of crotonaldehyde:[3][4]:230

CH
3
CH=CHCHO + 1/
2
O
2
→ CH
3
CH=CHCO
2
H

A number of other methods exist, including the Knoevenagel condensation of acetaldehyde with malonic acid in pyridine:[3]:229

Synthesis of crotonic acid by the Knoevenagel condensation of acetaldehyde and malonic acid

The alkaline hydrolysis of allyl cyanide followed by the intramolecular rearrangement of the double bond:[5][6]

Alkaline hydrolysis of allyl cyanide

Furthermore, it is formed during the distillation of 3-hydroxybutyric acid:[7]

Synthesis of crotonic acid from 3-hydroxybutyric acid

Properties

Crotonic acid crystallizes in the monoclinic crystal system in the space group P21/a (space group 14, position 3) with the lattice parameters a = 971 pm, b = 690 pm, c = 775 pm and β = 104.0°. The unit cell contains four formula units.[8]

Reactions

Crotonic acid converts into butyric acid by hydrogenation or by reduction with zinc and sulfuric acid.[9]

Hydrogenation of crotonic acid

Upon treatment with chlorine or bromine, crotonic acid converts to 2,3-dihalobutyric acids:[9]

Chlorination of butenoic acid

Crotonic acid adds hydrogen bromide to form 3-bromobutyric acid.[9][10]

Reaction of crotonic acid with hydrogen bromide.

The reaction with alkaline potassium permanganate solution affords 2,3-dihydroxybutyric acid.[9]

Reaction of crotonic acid with alkaline potassium permanganate solution.

Upon heating with acetic anhydride, crotonic acid converts to the acid anhydride:[11]

Esterification of crotonic acid using sulfuric acid as a catalyst provides the corresponding crotonate esters:

Preparation of crotonate esters.

Crotonic acid reacts with hypochlorous acid to 2-chloro-3-hydroxybutyric acid. This can either be reduced with sodium amalgam to butyric acid, can form with sulfuric acid 2-chlorobutenoic acid, react with hydrogen chloride to 2,3-dichlorobutenoic acid or with potassium ethoxide to 3-methyloxirane-2-carboxylic acid.[12]

Reaction of crotonic acid into 2-chloro-3-hydroxybutanoic acid and subsequent reactions

Crotonic acid reacts with ammonia at the alpha position in the presence of mercury(II) acetate. This reaction provides DL-threonine.[13]

Use

Crotonic acid is mainly used as a comonomer with vinyl acetate.[14] The resulting copolymers are used in paints and adhesives.[4]

Crotonyl chloride reacts with N-ethyl-2-methylaniline (N-ethyl-o-toluidine) to provide crotamiton, which is used as an agent against scabies.[15]

Crotamiton synthesis

Safety

Its -1">50 is 1 g/kg (oral, rats).[4] It irritates eyes, skin, and respiratory system.[14]

See also

References

  1. Dawson, R. M. C. (1959). Data for Biochemical Research. Oxford: Clarendon Press. 
  2. Chisholm, Hugh, ed (1911). "Crotonic Acid". Encyclopædia Britannica. 7 (11th ed.). Cambridge University Press. p. 511. 
  3. 3.0 3.1 Beyer, Hans; Walter, Wolfgang (1984) (in de). Organische Chemie. Stuttgart: S. Hirzel Verlag. ISBN 3-7776-0406-2. 
  4. 4.0 4.1 4.2 Schulz, R. P.; Blumenstein, J.; Kohlpaintner, C. (2005). "Ullmann's Encyclopedia of Industrial Chemistry". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a08_083. 
  5. Rinne, A.; Tollens, B. (1871). "Ueber das Allylcyanür oder Crotonitril". Justus Liebigs Annalen der Chemie 159 (1): 105–109. doi:10.1002/jlac.18711590110. https://zenodo.org/record/1427303. 
  6. Pomeranz, C. (1906). "Ueber Allylcyanid und Allylsenföl". Justus Liebigs Annalen der Chemie 351 (1–3): 354–362. doi:10.1002/jlac.19073510127. https://zenodo.org/record/1427569. 
  7. Beilstein, F. (1893) (in de). Handbuch der organischen Chemie. 1 (3rd ed.). Verlag Leopold Voss. p. 506. http://www26.us.archive.org/stream/handbuchderorgan00beil#page/506/mode/2up. 
  8. Shimizu, S.; Kekka, S.; Kashino, S.; Haisa, M. (1974). "Topochemical Studies. III. The Crystal and Molecular Structures of Crotonic Acid, CH3CH=CHCO2H, and Crotonamide, CH3CH=CHCONH2". Bulletin of the Chemical Society of Japan 47 (7): 1627–1631. doi:10.1246/bcsj.47.1627. 
  9. 9.0 9.1 9.2 9.3 Heilbron (1953). "Crotonic acid". Dictionary of Organic Compounds 1: 615. https://archive.org/stream/dictionaryoforga011095mbp#page/n633/mode/2up. 
  10. Lovén, J. M.; Johansson, H. (1915). "Einige schwefelhaltige β-Substitutionsderivate der Buttersäure". Berichte der deutschen chemischen Gesellschaft 48 (2): 1254–1262. doi:10.1002/cber.19150480205. https://zenodo.org/record/1426589. 
  11. Clover, A. M.; Richmond, G. F. (1903). "The Hydrolysis of Organic Peroxides and Peracids". American Chemical Journal 29 (3): 179–203. https://archive.org/stream/americanchemical291903balt#page/178/mode/2up. 
  12. Beilstein, F. (1893) (in de). Handbuch der organischen Chemie. 1 (3rd ed.). Verlag Leopold Voss. p. 562. http://www26.us.archive.org/stream/handbuchderorgan00beil#page/562/mode/2up. 
  13. Carter, H. E.; West, H. D. (1955). "dl-Threonine". Organic Syntheses. http://www.orgsyn.org/demo.aspx?prep=cv3p0813. ; Collective Volume, 3, pp. 813 
  14. 14.0 14.1 Entry on Butensäuren. at: Römpp Online. Georg Thieme Verlag, retrieved January 7, 2020.
  15. Kleemann, A.; Engel, J.. Pharmazeutische Wirkstoffe: Synthesen, Patente, Anwendungen. 5 (2nd rev. and updated ed.). Stuttgart & New York: Georg Thieme Verlag. p. 251. ISBN 3-13-558402-X.