5000 (number)

From HandWiki
Short description: Natural number
← 4999 5000 5001 →
Cardinalfive thousand
Ordinal5000th
(five thousandth)
Factorization23 × 54
Greek numeral,Ε´
Roman numeralV
Unicode symbol(s)V, v, ↁ
Binary10011100010002
Ternary202120123
Quaternary10320204
Quinary1300005
Senary350526
Octal116108
Duodecimal2A8812
Hexadecimal138816
VigesimalCA020
Base 363UW36

5000 (five thousand) is the natural number following 4999 and preceding 5001. Five thousand is the largest isogrammic numeral in the English language.


Selected numbers in the range 5001–5999

5001 to 5099

5100 to 5199

  • 5107super-prime, balanced prime[5]
  • 5113 – balanced prime[5]
  • 5117 – sum of the first 50 primes
  • 5151 – triangular number
  • 5167 – Leonardo prime, cuban prime of the form x = y + 1[6]
  • 5171 – Sophie Germain prime
  • 5184 = 722
  • 5186 – φ(5186) = 2592
  • 5187 – φ(5187) = 2592
  • 5188 – φ(5189) = 2592, centered heptagonal number[7]
  • 5189super-prime

5200 to 5299

  • 5209 - largest minimal prime in base 6
  • 5226 – nonagonal number[8]
  • 5231 – Sophie Germain prime
  • 5244 = 222 + 232 + … + 292 = 202 + 212 + … + 282
  • 5249highly cototient number[9]
  • 5253 – triangular number
  • 5279 – Sophie Germain prime, twin prime with 5281, 700th prime number
  • 5280 is the number of feet in a mile.[10] It is divisible by three, yielding 1760 yards per mile and by 16.5, yielding 320 rods per mile. Also, 5280 is connected with both Klein's J-invariant and the Heegner numbers. Specifically:
[math]\displaystyle{ 5280 = -\sqrt[3]{j\left( {\scriptstyle\frac{1}{2}} \left( 1 + i\sqrt{67}\, \right)\right) }. }[/math]

5300 to 5399

  • 5303 – Sophie Germain prime, balanced prime[5]
  • 5329 = 732, centered octagonal number[2]
  • 5333 – Sophie Germain prime
  • 5335magic constant of n × n normal magic square and n-queens problem for n = 22.
  • 5340 – octahedral number[12]
  • 5356 – triangular number
  • 5365 – decagonal number[4]
  • 5381super-prime
  • 5387 – safe prime, balanced prime[5]
  • 5392Leyland number[13]
  • 5393 – balanced prime[5]
  • 5399 – Sophie Germain prime, safe prime

5400 to 5499

  • 5402 – number of non-equivalent ways of expressing 1,000,000 as the sum of two prime numbers[14]
  • 5405 – member of a Ruth–Aaron pair with 5406 (either definition)
  • 5406 – member of a Ruth–Aaron pair with 5405 (either definition)
  • 5419 – Cuban prime of the form x = y + 1[6]
  • 5441 – Sophie Germain prime, super-prime
  • 5456 – tetrahedral number[15]
  • 5459 – highly cototient number[9]
  • 5460 – triangular number
  • 5461super-Poulet number,[16] centered heptagonal number[7]
  • 5476 = 742
  • 5483 – safe prime

5500 to 5599

  • 5500 – nonagonal number[8]
  • 5501 – Sophie Germain prime, twin prime with 5503
  • 5503super-prime, twin prime with 5501, cousin prime with 5507
  • 5507 – safe prime, cousin prime with 5503
  • 5525 – square pyramidal number[17]
  • 5527happy prime
  • 5536 – tetranacci number[18]
  • 5557 – super-prime
  • 5563 – balanced prime
  • 5564 – amicable number with 5020
  • 5565 – triangular number
  • 5566 – pentagonal pyramidal number[19]
  • 5569 – happy prime
  • 5571perfect totient number[20]
  • 5581 – prime of the form 2p-1

5600 to 5699

  • 5623super-prime
  • 5625 = 752, centered octagonal number[2]
  • 5631 – number of compositions of 15 whose run-lengths are either weakly increasing or weakly decreasing[21]
  • 5639 – Sophie Germain prime, safe prime
  • 5651 – super-prime
  • 5659 – happy prime, completes the eleventh prime quadruplet set
  • 5662 – decagonal number[4]
  • 5671 – triangular number

5700 to 5799

5800 to 5899

  • 5801super-prime
  • 5807 – safe prime, balanced prime
  • 5832 = 183
  • 5842 – member of the Padovan sequence[28]
  • 5849 – Sophie Germain prime
  • 5869 – super-prime
  • 5879 – safe prime, highly cototient number[9]
  • 5886 – triangular number

5900 to 5999

  • 5903 – Sophie Germain prime
  • 5913 – sum of the first seven factorials
  • 5927 – safe prime
  • 5929 = 772, centered octagonal number[2]
  • 5939 – safe prime
  • 5967 – decagonal number[4]
  • 5984 – tetrahedral number[15]
  • 5995 – triangular number

Prime numbers

There are 114 prime numbers between 5000 and 6000:[29][30]

5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987

References

  1. "Sloane's A088054 : Factorial primes". OEIS Foundation. https://oeis.org/A088054. 
  2. 2.0 2.1 2.2 2.3 "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". OEIS Foundation. https://oeis.org/A016754. 
  3. 3.0 3.1 "Sloane's A006886 : Kaprekar numbers". OEIS Foundation. https://oeis.org/A006886. 
  4. 4.0 4.1 4.2 4.3 "Sloane's A001107 : 10-gonal (or decagonal) numbers". OEIS Foundation. https://oeis.org/A001107. 
  5. 5.0 5.1 5.2 5.3 5.4 "Sloane's A006562 : Balanced primes". OEIS Foundation. https://oeis.org/A006562. 
  6. 6.0 6.1 "Sloane's A002407 : Cuban primes". OEIS Foundation. https://oeis.org/A002407. 
  7. 7.0 7.1 7.2 "Sloane's A069099 : Centered heptagonal numbers". OEIS Foundation. https://oeis.org/A069099. 
  8. 8.0 8.1 8.2 "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". OEIS Foundation. https://oeis.org/A001106. 
  9. 9.0 9.1 9.2 "Sloane's A100827 : Highly cototient numbers". OEIS Foundation. https://oeis.org/A100827. 
  10. "Weights and measures". Merriam-Webster. https://www.merriam-webster.com/dictionary/weight#table. Retrieved 11 March 2021. 
  11. "My 14-Hour Search for the End of TGI Friday's Endless Appetizers". 18 July 2014. https://gawker.com/my-14-hour-search-for-the-end-of-tgi-fridays-endless-ap-1606122925. 
  12. "Sloane's A005900 : Octahedral numbers". OEIS Foundation. https://oeis.org/A005900. 
  13. "Sloane's A076980 : Leyland numbers". OEIS Foundation. https://oeis.org/A076980. 
  14. Sloane, N. J. A., ed. "Sequence A065577 (Number of Goldbach partitions of 10^n)". OEIS Foundation. https://oeis.org/A065577. Retrieved 2023-08-31. 
  15. 15.0 15.1 "Sloane's A000292 : Tetrahedral numbers". OEIS Foundation. https://oeis.org/A000292. 
  16. "Sloane's A050217 : Super-Poulet numbers". OEIS Foundation. https://oeis.org/A050217. 
  17. "Sloane's A000330 : Square pyramidal numbers". OEIS Foundation. https://oeis.org/A000330. 
  18. "Sloane's A000078 : Tetranacci numbers". OEIS Foundation. https://oeis.org/A000078. 
  19. "Sloane's A002411 : Pentagonal pyramidal numbers". OEIS Foundation. https://oeis.org/A002411. 
  20. "Sloane's A082897 : Perfect totient numbers". OEIS Foundation. https://oeis.org/A082897. 
  21. Sloane, N. J. A., ed. "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". OEIS Foundation. https://oeis.org/A332835. Retrieved 2022-06-02. 
  22. "Sloane's A051015 : Zeisel numbers". OEIS Foundation. https://oeis.org/A051015. 
  23. "Sloane's A006972 : Lucas-Carmichael numbers". OEIS Foundation. https://oeis.org/A006972. 
  24. "Sloane's A000129 : Pell numbers". OEIS Foundation. https://oeis.org/A000129. 
  25. "Sloane's A002559 : Markoff (or Markov) numbers". OEIS Foundation. https://oeis.org/A002559. 
  26. "Sloane's A000073 : Tribonacci numbers". OEIS Foundation. https://oeis.org/A000073. 
  27. "Sloane's A001006 : Motzkin numbers". OEIS Foundation. https://oeis.org/A001006. 
  28. "Sloane's A000931 : Padovan sequence". OEIS Foundation. https://oeis.org/A000931. 
  29. Sloane, N. J. A., ed. "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". OEIS Foundation. https://oeis.org/A038823. 
  30. Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". https://wstein.org/talks/2017-02-10-wing-rh_and_bsd/.