Kaprekar number

From HandWiki
Short description: Base-dependent property of integers


In mathematics, a natural number in a given number base is a [math]\displaystyle{ p }[/math]-Kaprekar number if the representation of its square in that base can be split into two parts, where the second part has [math]\displaystyle{ p }[/math] digits, that add up to the original number. For example, in base 10, 45 is a 2-Kaprekar number, because 45² = 2025, and 20 + 25 = 45. The numbers are named after D. R. Kaprekar.

Definition and properties

Let [math]\displaystyle{ n }[/math] be a natural number. We define the Kaprekar function for base [math]\displaystyle{ b \gt 1 }[/math] and power [math]\displaystyle{ p \gt 0 }[/math] [math]\displaystyle{ F_{p, b} : \mathbb{N} \rightarrow \mathbb{N} }[/math] to be the following:

[math]\displaystyle{ F_{p, b}(n) = \alpha + \beta }[/math],

where [math]\displaystyle{ \beta = n^2 \bmod b^p }[/math] and

[math]\displaystyle{ \alpha = \frac{n^2 - \beta}{b^p} }[/math]

A natural number [math]\displaystyle{ n }[/math] is a [math]\displaystyle{ p }[/math]-Kaprekar number if it is a fixed point for [math]\displaystyle{ F_{p, b} }[/math], which occurs if [math]\displaystyle{ F_{p, b}(n) = n }[/math]. [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ 1 }[/math] are trivial Kaprekar numbers for all [math]\displaystyle{ b }[/math] and [math]\displaystyle{ p }[/math], all other Kaprekar numbers are nontrivial Kaprekar numbers.

The earlier example of 45 satisfies this definition with [math]\displaystyle{ b = 10 }[/math] and [math]\displaystyle{ p = 2 }[/math], because

[math]\displaystyle{ \beta = n^2 \bmod b^p = 45^2 \bmod 10^2 = 25 }[/math]
[math]\displaystyle{ \alpha = \frac{n^2 - \beta}{b^p} = \frac{45^2 - 25}{10^2} = 20 }[/math]
[math]\displaystyle{ F_{2, 10}(45) = \alpha + \beta = 20 + 25 = 45 }[/math]

A natural number [math]\displaystyle{ n }[/math] is a sociable Kaprekar number if it is a periodic point for [math]\displaystyle{ F_{p, b} }[/math], where [math]\displaystyle{ F_{p, b}^k(n) = n }[/math] for a positive integer [math]\displaystyle{ k }[/math] (where [math]\displaystyle{ F_{p, b}^k }[/math] is the [math]\displaystyle{ k }[/math]th iterate of [math]\displaystyle{ F_{p, b} }[/math]), and forms a cycle of period [math]\displaystyle{ k }[/math]. A Kaprekar number is a sociable Kaprekar number with [math]\displaystyle{ k = 1 }[/math], and a amicable Kaprekar number is a sociable Kaprekar number with [math]\displaystyle{ k = 2 }[/math].

The number of iterations [math]\displaystyle{ i }[/math] needed for [math]\displaystyle{ F_{p, b}^{i}(n) }[/math] to reach a fixed point is the Kaprekar function's persistence of [math]\displaystyle{ n }[/math], and undefined if it never reaches a fixed point.

There are only a finite number of [math]\displaystyle{ p }[/math]-Kaprekar numbers and cycles for a given base [math]\displaystyle{ b }[/math], because if [math]\displaystyle{ n = b^p + m }[/math], where [math]\displaystyle{ m \gt 0 }[/math] then

[math]\displaystyle{ \begin{align} n^2 & = (b^p + m)^2 \\ & = b^{2p} + 2mb^p + m^2 \\ & = (b^p + 2m)b^p + m^2 \\ \end{align} }[/math]

and [math]\displaystyle{ \beta = m^2 }[/math], [math]\displaystyle{ \alpha = b^p + 2m }[/math], and [math]\displaystyle{ F_{p, b}(n) = b^p + 2m + m^2 = n + (m^2 + m) \gt n }[/math]. Only when [math]\displaystyle{ n \leq b^p }[/math] do Kaprekar numbers and cycles exist.

If [math]\displaystyle{ d }[/math] is any divisor of [math]\displaystyle{ p }[/math], then [math]\displaystyle{ n }[/math] is also a [math]\displaystyle{ p }[/math]-Kaprekar number for base [math]\displaystyle{ b^p }[/math].

In base [math]\displaystyle{ b = 2 }[/math], all even perfect numbers are Kaprekar numbers. More generally, any numbers of the form [math]\displaystyle{ 2^n (2^{n + 1} - 1) }[/math] or [math]\displaystyle{ 2^n (2^{n + 1} + 1) }[/math] for natural number [math]\displaystyle{ n }[/math] are Kaprekar numbers in base 2.

Set-theoretic definition and unitary divisors

We can define the set [math]\displaystyle{ K(N) }[/math] for a given integer [math]\displaystyle{ N }[/math] as the set of integers [math]\displaystyle{ X }[/math] for which there exist natural numbers [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] satisfying the Diophantine equation[1]

[math]\displaystyle{ X^2 = AN + B }[/math], where [math]\displaystyle{ 0 \leq B \lt N }[/math]
[math]\displaystyle{ X = A + B }[/math]

An [math]\displaystyle{ n }[/math]-Kaprekar number for base [math]\displaystyle{ b }[/math] is then one which lies in the set [math]\displaystyle{ K(b^n) }[/math].

It was shown in 2000[1] that there is a bijection between the unitary divisors of [math]\displaystyle{ N - 1 }[/math] and the set [math]\displaystyle{ K(N) }[/math] defined above. Let [math]\displaystyle{ \operatorname{Inv}(a, c) }[/math] denote the multiplicative inverse of [math]\displaystyle{ a }[/math] modulo [math]\displaystyle{ c }[/math], namely the least positive integer [math]\displaystyle{ m }[/math] such that [math]\displaystyle{ am = 1 \bmod c }[/math], and for each unitary divisor [math]\displaystyle{ d }[/math] of [math]\displaystyle{ N - 1 }[/math] let [math]\displaystyle{ e = \frac{N - 1}{d} }[/math] and [math]\displaystyle{ \zeta(d) = d\ \text{Inv}(d, e) }[/math]. Then the function [math]\displaystyle{ \zeta }[/math] is a bijection from the set of unitary divisors of [math]\displaystyle{ N - 1 }[/math] onto the set [math]\displaystyle{ K(N) }[/math]. In particular, a number [math]\displaystyle{ X }[/math] is in the set [math]\displaystyle{ K(N) }[/math] if and only if [math]\displaystyle{ X = d\ \text{Inv}(d, e) }[/math] for some unitary divisor [math]\displaystyle{ d }[/math] of [math]\displaystyle{ N - 1 }[/math].

The numbers in [math]\displaystyle{ K(N) }[/math] occur in complementary pairs, [math]\displaystyle{ X }[/math] and [math]\displaystyle{ N - X }[/math]. If [math]\displaystyle{ d }[/math] is a unitary divisor of [math]\displaystyle{ N - 1 }[/math] then so is [math]\displaystyle{ e = \frac{N - 1}{d} }[/math], and if [math]\displaystyle{ X = d\operatorname{Inv}(d, e) }[/math] then [math]\displaystyle{ N - X = e\operatorname{Inv}(e, d) }[/math].

Kaprekar numbers for [math]\displaystyle{ F_{p, b} }[/math]

b = 4k + 3 and p = 2n + 1

Let [math]\displaystyle{ k }[/math] and [math]\displaystyle{ n }[/math] be natural numbers, the number base [math]\displaystyle{ b = 4k + 3 = 2(2k + 1) + 1 }[/math], and [math]\displaystyle{ p = 2n + 1 }[/math]. Then:

  • [math]\displaystyle{ X_1 = \frac{b^p - 1}{2} = (2k + 1) \sum_{i = 0}^{p - 1} b^i }[/math] is a Kaprekar number.
  • [math]\displaystyle{ X_2 = \frac{b^p + 1}{2} = X_1 + 1 }[/math] is a Kaprekar number for all natural numbers [math]\displaystyle{ n }[/math].

b = m2k + m + 1 and p = mn + 1

Let [math]\displaystyle{ m }[/math], [math]\displaystyle{ k }[/math], and [math]\displaystyle{ n }[/math] be natural numbers, the number base [math]\displaystyle{ b = m^2k + m + 1 }[/math], and the power [math]\displaystyle{ p = mn + 1 }[/math]. Then:

  • [math]\displaystyle{ X_1 = \frac{b^p - 1}{m} = (mk + 1) \sum_{i = 0}^{p - 1} b^i }[/math] is a Kaprekar number.
  • [math]\displaystyle{ X_2 = \frac{b^p + m - 1}{m} = X_1 + 1 }[/math] is a Kaprekar number.

b = m2k + m + 1 and p = mn + m − 1

Let [math]\displaystyle{ m }[/math], [math]\displaystyle{ k }[/math], and [math]\displaystyle{ n }[/math] be natural numbers, the number base [math]\displaystyle{ b = m^2k + m + 1 }[/math], and the power [math]\displaystyle{ p = mn + m - 1 }[/math]. Then:

  • [math]\displaystyle{ X_1 = \frac{m(b^p - 1)}{4} = (m - 1)(mk + 1) \sum_{i = 0}^{p - 1} b^i }[/math] is a Kaprekar number.
  • [math]\displaystyle{ X_2 = \frac{mb^p + 1}{4} = X_3 + 1 }[/math] is a Kaprekar number.

b = m2k + m2m + 1 and p = mn + 1

Let [math]\displaystyle{ m }[/math], [math]\displaystyle{ k }[/math], and [math]\displaystyle{ n }[/math] be natural numbers, the number base [math]\displaystyle{ b = m^2k + m^2 - m + 1 }[/math], and the power [math]\displaystyle{ p = mn + m - 1 }[/math]. Then:

  • [math]\displaystyle{ X_1 = \frac{(m - 1)(b^p - 1)}{m} = (m - 1)(mk + 1) \sum_{i = 0}^{p - 1} b^i }[/math] is a Kaprekar number.
  • [math]\displaystyle{ X_2 = \frac{(m - 1)b^p + 1}{m} = X_1 + 1 }[/math] is a Kaprekar number.

b = m2k + m2m + 1 and p = mn + m − 1

Let [math]\displaystyle{ m }[/math], [math]\displaystyle{ k }[/math], and [math]\displaystyle{ n }[/math] be natural numbers, the number base [math]\displaystyle{ b = m^2k + m^2 - m + 1 }[/math], and the power [math]\displaystyle{ p = mn + m - 1 }[/math]. Then:

  • [math]\displaystyle{ X_1 = \frac{b^p - 1}{m} = (mk + 1) \sum_{i = 0}^{p - 1} b^i }[/math] is a Kaprekar number.
  • [math]\displaystyle{ X_2 = \frac{b^p + m - 1}{m} = X_3 + 1 }[/math] is a Kaprekar number.

Kaprekar numbers and cycles of [math]\displaystyle{ F_{p, b} }[/math] for specific [math]\displaystyle{ p }[/math], [math]\displaystyle{ b }[/math]

All numbers are in base [math]\displaystyle{ b }[/math].

Base [math]\displaystyle{ b }[/math] Power [math]\displaystyle{ p }[/math] Nontrivial Kaprekar numbers [math]\displaystyle{ n \neq 0 }[/math], [math]\displaystyle{ n \neq 1 }[/math] Cycles
2 1 10 [math]\displaystyle{ \varnothing }[/math]
3 1 2, 10 [math]\displaystyle{ \varnothing }[/math]
4 1 3, 10 [math]\displaystyle{ \varnothing }[/math]
5 1 4, 5, 10 [math]\displaystyle{ \varnothing }[/math]
6 1 5, 6, 10 [math]\displaystyle{ \varnothing }[/math]
7 1 3, 4, 6, 10 [math]\displaystyle{ \varnothing }[/math]
8 1 7, 10 2 → 4 → 2
9 1 8, 10 [math]\displaystyle{ \varnothing }[/math]
10 1 9, 10 [math]\displaystyle{ \varnothing }[/math]
11 1 5, 6, A, 10 [math]\displaystyle{ \varnothing }[/math]
12 1 B, 10 [math]\displaystyle{ \varnothing }[/math]
13 1 4, 9, C, 10 [math]\displaystyle{ \varnothing }[/math]
14 1 D, 10 [math]\displaystyle{ \varnothing }[/math]
15 1 7, 8, E, 10

2 → 4 → 2

9 → B → 9

16 1 6, A, F, 10 [math]\displaystyle{ \varnothing }[/math]
2 2 11 [math]\displaystyle{ \varnothing }[/math]
3 2 22, 100 [math]\displaystyle{ \varnothing }[/math]
4 2 12, 22, 33, 100 [math]\displaystyle{ \varnothing }[/math]
5 2 14, 31, 44, 100 [math]\displaystyle{ \varnothing }[/math]
6 2 23, 33, 55, 100

15 → 24 → 15

41 → 50 → 41

7 2 22, 45, 66, 100 [math]\displaystyle{ \varnothing }[/math]
8 2 34, 44, 77, 100

4 → 20 → 4

11 → 22 → 11

45 → 56 → 45

2 3 111, 1000 10 → 100 → 10
3 3 111, 112, 222, 1000 10 → 100 → 10
2 4 110, 1010, 1111, 10000 [math]\displaystyle{ \varnothing }[/math]
3 4 121, 2102, 2222, 10000 [math]\displaystyle{ \varnothing }[/math]
2 5 11111, 100000

10 → 100 → 10000 → 1000 → 10

111 → 10010 → 1110 → 1010 → 111

3 5 11111, 22222, 100000 10 → 100 → 10000 → 1000 → 10
2 6 11100, 100100, 111111, 1000000

100 → 10000 → 100

1001 → 10010 → 1001

100101 → 101110 → 100101

3 6 10220, 20021, 101010, 121220, 202202, 212010, 222222, 1000000

100 → 10000 → 100

122012 → 201212 → 122012

2 7 1111111, 10000000

10 → 100 → 10000 → 10

1000 → 1000000 → 100000 → 1000

100110 → 101111 → 110010 → 1010111 → 1001100 → 111101 → 100110

3 7 1111111, 1111112, 2222222, 10000000

10 → 100 → 10000 → 10

1000 → 1000000 → 100000 → 1000

1111121 → 1111211 → 1121111 → 1111121

2 8 1010101, 1111000, 10001000, 10101011, 11001101, 11111111, 100000000 [math]\displaystyle{ \varnothing }[/math]
3 8 2012021, 10121020, 12101210, 21121001, 20210202, 22222222, 100000000 [math]\displaystyle{ \varnothing }[/math]
2 9 10010011, 101101101, 111111111, 1000000000

10 → 100 → 10000 → 100000000 → 10000000 → 100000 → 10

1000 → 1000000 → 1000

10011010 → 11010010 → 10011010

Extension to negative integers

Kaprekar numbers can be extended to the negative integers by use of a signed-digit representation to represent each integer.

See also

Notes

  1. 1.0 1.1 Iannucci (2000)

References