7000 (number)

From HandWiki
Short description: Natural number
← 6999 7000 7001 →
Cardinalseven thousand
Ordinal7000th
(seven thousandth)
Factorization23 × 53 × 7
Greek numeral,Ζ´
Roman numeralVMM, or VII
Unicode symbol(s)VMM, vmm, VII, vii
Binary11011010110002
Ternary1001210213
Quaternary12311204
Quinary2110005
Senary522246
Octal155308
Duodecimal407412
Hexadecimal1B5816
VigesimalHA020
Base 365EG36

7000 (seven thousand) is the natural number following 6999 and preceding 7001.

Selected numbers in the range 7001–7999

7001 to 7099

7100 to 7199

  • 7103 – Sophie Germain prime, sexy prime with 7109
  • 7106 – octahedral number[3]
  • 7109super-prime, sexy prime with 7103
  • 7121 – Sophie Germain prime
  • 7140 – triangular number, also a pronic number and hence 7140/2 = 3570 is also a triangular number, tetrahedral number[4]
  • 7151 – Sophie Germain prime
  • 7155 – number of 19-bead necklaces (turning over is allowed) where complements are equivalent[5]
  • 7187 – safe prime
  • 7192weird number[6]
  • 7193 – Sophie Germain prime, super-prime

7200 to 7299

  • 7200 – pentagonal pyramidal number[7]
  • 7211 – Sophie Germain prime
  • 7225 = 852, centered octagonal number[8]
  • 7230 = 362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442
  • 7246 – centered heptagonal number[9]
  • 7247 – safe prime
  • 7260 – triangular number
  • 7267 – decagonal number[10]
  • 7272Kaprekar number[11]
  • 7283super-prime
  • 7291 – nonagonal number

7300 to 7399

  • 7316 – number of 18-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed[12]
  • 7338 – Fine number.[13]
  • 7349 – Sophie Germain prime
  • 7351super-prime, cuban prime of the form x = y + 1[1]
  • 7381 – triangular number
  • 7385Keith number[14]
  • 7396 = 862

7400 to 7499

  • 7417super-prime
  • 7433 – Sophie Germain prime
  • 7471 – centered cube number[15]
  • 7481 – super-prime, cousin prime

7500 to 7599

  • 7503 – triangular number
  • 7523balanced prime, safe prime, super-prime
  • 7537 – prime of the form 2p-1
  • 7541 – Sophie Germain prime
  • 7559 – safe prime
  • 7560highly composite number[16]
  • 7561 – Markov prime[17]
  • 7568 – centered heptagonal number
  • 7569 = 872, centered octagonal number[8]
  • 7583 – balanced prime

7600 to 7699

  • 7607 – safe prime, super-prime
  • 7612 – decagonal number[10]
  • 7614 – nonagonal number
  • 7626 – triangular number
  • 7643 – Sophie Germain prime, safe prime
  • 7647 – Keith number[14]
  • 7649 – Sophie Germain prime, super-prime
  • 7691 – Sophie Germain prime
  • 7699super-prime, emirp, sum of first 60 primes, first prime above 281 to be the sum of the first k primes for some k

7700 to 7799

  • 7703 – safe prime
  • 7710 = number of primitive polynomials of degree 17 over GF(2)[18]
  • 7714 – square pyramidal number[19]
  • 7727 – safe prime
  • 7739 – member of the Padovan sequence[20]
  • 7744 = 882, square palindrome not ending in 0
  • 7750 – triangular number
  • 7753super-prime
  • 7770 – tetrahedral number[4]
  • 7776 = 65, number of primitive polynomials of degree 18 over GF(2)[21]
  • 7777 – Kaprekar number[11]

7800 to 7899

  • 7810 – ISO/IEC 7810 is the ISO's standard for physical characteristics of identification cards
  • 7823 – Sophie Germain prime, safe prime, balanced prime
  • 7825magic constant of n × n normal magic square and n-Queens Problem for n = 25. Also the first counterexample in the Boolean Pythagorean triples problem.
  • 7841 – Sophie Germain prime, balanced prime, super-prime
  • 7875 – triangular number
  • 7883 – Sophie Germain prime, super-prime
  • 7897 – centered heptagonal number

7900 to 7999

Prime numbers

There are 107 prime numbers between 7000 and 8000:[24][25]

7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993

References

  1. 1.0 1.1 "Sloane's A002407 : Cuban primes". OEIS Foundation. https://oeis.org/A002407. 
  2. "Sloane's A076980 : Leyland numbers". OEIS Foundation. https://oeis.org/A076980. 
  3. "Sloane's A005900 : Octahedral numbers". OEIS Foundation. https://oeis.org/A005900. 
  4. 4.0 4.1 "Sloane's A000292 : Tetrahedral numbers". OEIS Foundation. https://oeis.org/A000292. 
  5. Sloane, N. J. A., ed. "Sequence A000011 (Number of n-bead necklaces (turning over is allowed) where complements are equivalent)". OEIS Foundation. https://oeis.org/A000011. 
  6. 6.0 6.1 "Sloane's A006037 : Weird numbers". OEIS Foundation. https://oeis.org/A006037. 
  7. "Sloane's A002411 : Pentagonal pyramidal numbers". OEIS Foundation. https://oeis.org/A002411. 
  8. 8.0 8.1 "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". OEIS Foundation. https://oeis.org/A016754. 
  9. "Sloane's A069099 : Centered heptagonal numbers". OEIS Foundation. https://oeis.org/A069099. 
  10. 10.0 10.1 10.2 "Sloane's A001107 : 10-gonal (or decagonal) numbers". OEIS Foundation. https://oeis.org/A001107. 
  11. 11.0 11.1 "Sloane's A006886 : Kaprekar numbers". OEIS Foundation. https://oeis.org/A006886. 
  12. Sloane, N. J. A., ed. "Sequence A000013 (Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed)". OEIS Foundation. https://oeis.org/A000013. 
  13. Sloane, N. J. A., ed. "Sequence A000957 (Fine's sequence (or Fine numbers): number of relations of valence > 0 on an n-set; also number of ordered rooted trees with n edges having root of even degree)". OEIS Foundation. https://oeis.org/A000957. Retrieved 2022-06-01. 
  14. 14.0 14.1 14.2 "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". OEIS Foundation. https://oeis.org/A007629. 
  15. "Sloane's A005898 : Centered cube numbers". OEIS Foundation. https://oeis.org/A005898. 
  16. "Sloane's A002182 : Highly composite numbers". OEIS Foundation. https://oeis.org/A002182. 
  17. "Sloane's A002559 : Markoff (or Markov) numbers". OEIS Foundation. https://oeis.org/A002559. 
  18. Sloane, N. J. A., ed. "Sequence A011260 (Number of primitive polynomials of degree n over GF(2))". OEIS Foundation. https://oeis.org/A011260. 
  19. "Sloane's A000330 : Square pyramidal numbers". OEIS Foundation. https://oeis.org/A000330. 
  20. "Sloane's A000931 : Padovan sequence". OEIS Foundation. https://oeis.org/A000931. 
  21. Sloane, N. J. A., ed. "Sequence A011260 (Number of primitive polynomials of degree n over GF(2))". OEIS Foundation. https://oeis.org/A011260. 
  22. "7919". University of Tennessee. https://primes.utm.edu/curios/page.php/7919.html. 
  23. "Sloane's A050217 : Super-Poulet numbers". OEIS Foundation. https://oeis.org/A050217. 
  24. Sloane, N. J. A., ed. "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". OEIS Foundation. https://oeis.org/A038823. 
  25. Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". https://wstein.org/talks/2017-02-10-wing-rh_and_bsd/.