6-demicubic honeycomb

From HandWiki
6-demicubic honeycomb
(No image)
Type Uniform 6-honeycomb
Family Alternated hypercube honeycomb
Schläfli symbol h{4,3,3,3,3,4}
h{4,3,3,3,31,1}
ht0,6{4,3,3,3,3,4}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png = CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel label2.pngCDel branch hh.pngCDel 4a4b.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
Facets {3,3,3,3,4} 6-cube t5.svg
h{4,3,3,3,3} 6-demicube t0 D6.svg
Vertex figure r{3,3,3,3,4} Rectified hexacross.svg
Coxeter group [math]\displaystyle{ {\tilde{B}}_6 }[/math] [4,3,3,3,31,1]
[math]\displaystyle{ {\tilde{D}}_6 }[/math] [31,1,3,3,31,1]

The 6-demicubic honeycomb or demihexeractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 6-space. It is constructed as an alternation of the regular 6-cube honeycomb.

It is composed of two different types of facets. The 6-cubes become alternated into 6-demicubes h{4,3,3,3,3} and the alternated vertices create 6-orthoplex {3,3,3,3,4} facets.

D6 lattice

The vertex arrangement of the 6-demicubic honeycomb is the D6 lattice.[1] The 60 vertices of the rectified 6-orthoplex vertex figure of the 6-demicubic honeycomb reflect the kissing number 60 of this lattice.[2] The best known is 72, from the E6 lattice and the 222 honeycomb.

The D+6 lattice (also called D26) can be constructed by the union of two D6 lattices. This packing is only a lattice for even dimensions. The kissing number is 25=32 (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8).[3]

CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png

The D*6 lattice (also called D46 and C26) can be constructed by the union of all four 6-demicubic lattices:[4] It is also the 6-dimensional body centered cubic, the union of two 6-cube honeycombs in dual positions.

CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel nodes 01rd.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 01ld.png = CDel nodes 10r.pngCDel 4a4b.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel nodes 01r.pngCDel 4a4b.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png.

The kissing number of the D6* lattice is 12 (2n for n≥5).[5] and its Voronoi tessellation is a trirectified 6-cubic honeycomb, CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 4a4b.pngCDel nodes.png, containing all birectified 6-orthoplex Voronoi cell, CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png.[6]

Symmetry constructions

There are three uniform construction symmetries of this tessellation. Each symmetry can be represented by arrangements of different colors on the 64 6-demicube facets around each vertex.

Coxeter group Schläfli symbol Coxeter-Dynkin diagram Vertex figure
Symmetry
Facets/verf
[math]\displaystyle{ {\tilde{B}}_6 }[/math] = [31,1,3,3,3,4]
= [1+,4,3,3,3,3,4]
h{4,3,3,3,3,4} CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[3,3,3,4]
64: 6-demicube
12: 6-orthoplex
[math]\displaystyle{ {\tilde{D}}_6 }[/math] = [31,1,3,31,1]
= [1+,4,3,3,31,1]
h{4,3,3,3,31,1} CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
[33,1,1]
32+32: 6-demicube
12: 6-orthoplex
½[math]\displaystyle{ {\tilde{C}}_6 }[/math] = (4,3,3,3,4,2+) ht0,6{4,3,3,3,3,4} CDel label2.pngCDel branch hh.pngCDel 4a4b.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png 32+16+16: 6-demicube
12: 6-orthoplex

Related honeycombs

See also

Notes

  1. "The Lattice D6". http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D6.html. 
  2. Sphere packings, lattices, and groups, by John Horton Conway, Neil James Alexander Sloane, Eiichi Bannai [1]
  3. Conway (1998), p. 119
  4. "The Lattice D6". http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Ds6.html. 
  5. Conway (1998), p. 120
  6. Conway (1998), p. 466

External links

Fundamental convex regular and uniform honeycombs in dimensions 2-9
Space Family [math]\displaystyle{ {\tilde{A}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{C}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{B}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{D}}_{n-1} }[/math] [math]\displaystyle{ {\tilde{G}}_2 }[/math] / [math]\displaystyle{ {\tilde{F}}_4 }[/math] / [math]\displaystyle{ {\tilde{E}}_{n-1} }[/math]
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21