6-demicubic honeycomb
6-demicubic honeycomb | |
---|---|
(No image) | |
Type | Uniform 6-honeycomb |
Family | Alternated hypercube honeycomb |
Schläfli symbol | h{4,3,3,3,3,4} h{4,3,3,3,31,1} ht0,6{4,3,3,3,3,4} |
Coxeter diagram | = = |
Facets | {3,3,3,3,4} h{4,3,3,3,3} |
Vertex figure | r{3,3,3,3,4} |
Coxeter group | [math]\displaystyle{ {\tilde{B}}_6 }[/math] [4,3,3,3,31,1] [math]\displaystyle{ {\tilde{D}}_6 }[/math] [31,1,3,3,31,1] |
The 6-demicubic honeycomb or demihexeractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 6-space. It is constructed as an alternation of the regular 6-cube honeycomb.
It is composed of two different types of facets. The 6-cubes become alternated into 6-demicubes h{4,3,3,3,3} and the alternated vertices create 6-orthoplex {3,3,3,3,4} facets.
D6 lattice
The vertex arrangement of the 6-demicubic honeycomb is the D6 lattice.[1] The 60 vertices of the rectified 6-orthoplex vertex figure of the 6-demicubic honeycomb reflect the kissing number 60 of this lattice.[2] The best known is 72, from the E6 lattice and the 222 honeycomb.
The D+6 lattice (also called D26) can be constructed by the union of two D6 lattices. This packing is only a lattice for even dimensions. The kissing number is 25=32 (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8).[3]
- ∪
The D*6 lattice (also called D46 and C26) can be constructed by the union of all four 6-demicubic lattices:[4] It is also the 6-dimensional body centered cubic, the union of two 6-cube honeycombs in dual positions.
- ∪ ∪ ∪ = ∪ .
The kissing number of the D6* lattice is 12 (2n for n≥5).[5] and its Voronoi tessellation is a trirectified 6-cubic honeycomb, , containing all birectified 6-orthoplex Voronoi cell, .[6]
Symmetry constructions
There are three uniform construction symmetries of this tessellation. Each symmetry can be represented by arrangements of different colors on the 64 6-demicube facets around each vertex.
Coxeter group | Schläfli symbol | Coxeter-Dynkin diagram | Vertex figure Symmetry |
Facets/verf |
---|---|---|---|---|
[math]\displaystyle{ {\tilde{B}}_6 }[/math] = [31,1,3,3,3,4] = [1+,4,3,3,3,3,4] |
h{4,3,3,3,3,4} | = | [3,3,3,4] |
64: 6-demicube 12: 6-orthoplex |
[math]\displaystyle{ {\tilde{D}}_6 }[/math] = [31,1,3,31,1] = [1+,4,3,3,31,1] |
h{4,3,3,3,31,1} | = | [33,1,1] |
32+32: 6-demicube 12: 6-orthoplex |
½[math]\displaystyle{ {\tilde{C}}_6 }[/math] = (4,3,3,3,4,2+) | ht0,6{4,3,3,3,3,4} | 32+16+16: 6-demicube 12: 6-orthoplex |
Related honeycombs
See also
Notes
- ↑ "The Lattice D6". http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D6.html.
- ↑ Sphere packings, lattices, and groups, by John Horton Conway, Neil James Alexander Sloane, Eiichi Bannai [1]
- ↑ Conway (1998), p. 119
- ↑ "The Lattice D6". http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Ds6.html.
- ↑ Conway (1998), p. 120
- ↑ Conway (1998), p. 466
External links
- Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN:978-0-471-01003-6 [2]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Conway JH, Sloane NJH (1998). Sphere Packings, Lattices and Groups (3rd ed.). ISBN 0-387-98585-9. https://archive.org/details/spherepackingsla0000conw_b8u0.
Fundamental convex regular and uniform honeycombs in dimensions 2-9
| ||||||
---|---|---|---|---|---|---|
Space | Family | [math]\displaystyle{ {\tilde{A}}_{n-1} }[/math] | [math]\displaystyle{ {\tilde{C}}_{n-1} }[/math] | [math]\displaystyle{ {\tilde{B}}_{n-1} }[/math] | [math]\displaystyle{ {\tilde{D}}_{n-1} }[/math] | [math]\displaystyle{ {\tilde{G}}_2 }[/math] / [math]\displaystyle{ {\tilde{F}}_4 }[/math] / [math]\displaystyle{ {\tilde{E}}_{n-1} }[/math] |
E2 | Uniform tiling | {3[3]} | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | {3[4]} | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | {3[5]} | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | {3[6]} | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | {3[7]} | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | {3[8]} | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | {3[9]} | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | {3[10]} | δ10 | hδ10 | qδ10 | |
En-1 | Uniform (n-1)-honeycomb | {3[n]} | δn | hδn | qδn | 1k2 • 2k1 • k21 |
Original source: https://en.wikipedia.org/wiki/6-demicubic honeycomb.
Read more |